L-series from Feynman diagrams with up to 22 loops
 David Broadhurst, Open University, UK
 Paris, 7 June 2017

Beyond 3 loops, polylogarithms no longer suffice for the QED contributions to the magnetic moment of the electron. At 4 loops, one encounters an L-series of a modular form of weight 4. I shall report on L-series that similarly result from Feynman diagrams with up to 22 loops. A salient feature is the existence of intricate quadratic relations between Feynman integrals, encoded by Betti and de Rham matrices that generalize Legendre's quadratic relation between elliptic integrals. Here is the plan:

1. Stefano Laporta's great feat in 4-loop QED
2. Automorphic forms up to 6 loops
3. L-series up to 22 loops [*]
4. Betti and de Rham matrices for all loops [*]
[*] with David P. Roberts, University of Minnesota Morris, USA

1 Stefano Laporta's great feat in 4-loop QED

The magnetic moment of the electron, in Bohr magnetons, has QED contributions $\sum_{L \geq 0} a_{L}(\alpha / \pi)^{L}$ that are given up to $L=4$ loops by

$$
\begin{aligned}
& a_{0}=1 \quad[\text { Dirac, 1928] } \\
& a_{1}=0.5 \quad[\text { Schwinger, 1947] } \\
& a_{2}=-0.32847896557919378458217281696489239241111929867962 \ldots \\
& a_{3}=1.18124145658720000627475398221287785336878939093213 \ldots \\
& a_{4}=-1.91224576492644557415264716743983005406087339065872 \ldots
\end{aligned}
$$

In 1957, corrections by Petermann and Sommerfield resulted in

$$
a_{2}=\frac{197}{144}+\frac{\zeta(2)}{2}+\frac{3 \zeta(3)-2 \pi^{2} \log 2}{4} .
$$

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

$$
\begin{aligned}
a_{3}= & \frac{28259}{5184}+\frac{17101 \zeta(2)}{135}+\frac{139 \zeta(3)-596 \pi^{2} \log 2}{18} \\
& -\frac{39 \zeta(4)+400 U_{3,1}}{24}-\frac{215 \zeta(5)-166 \zeta(3) \zeta(2)}{24} .
\end{aligned}
$$

The 3-loop contribution contains a weight-4 depth-2 polylogarithm

$$
U_{3,1}:=\sum_{m>n>0} \frac{(-1)^{m+n}}{m^{3} n}=\frac{\zeta(4)}{2}+\frac{\left(\pi^{2}-\log ^{2} 2\right) \log ^{2} 2}{12}-2 \sum_{n>0} \frac{1}{2^{n} n^{4}}
$$

encountered in my study of alternating sums [arXiv:hep-th/9611004]. Equally fascinating is the Bessel moment $B:=\sqrt{3} E_{4 a}$, at weight 4 , in the breath-taking evaluation by Laporta [arXiv:1704.06996] of $\mathbf{4 8 0 0}$ digits of
$a_{4}=P+B+E+U \approx 2650.565-1483.685-1036.765-132.027 \approx-1.912$
where P comprises polylogs and E comprises integrals, with weights 5,6 and 7 , whose integrands contain logs and products of elliptic integrals. U comes from 6 light-by-light master integrals, still under investigation.
The weight-4 non-polylogarithm at 4 loops has $N=6$ Bessel functions:

$$
\begin{aligned}
B & =-\int_{0}^{\infty} \frac{27550138 t+35725423 t^{3}}{48600} I_{0}(t) K_{0}^{5}(t) \mathrm{d} t \\
& =-1483.68505914882529459059985184510836700500152630607810 \ldots
\end{aligned}
$$

with 5 instances of $K_{0}(t)$, from 5 -fermion intermediate states. The sibling of $K_{0}(t)$ is $I_{0}(t)=\sum_{k \geq 0}\left((t / 2)^{k} / k!\right)^{2}$, resulting from Fourier transformation. The powers of t in B are easy to interpret in $D=2$ spacetime dimensions.

2 Automorphic forms up to 6 loops

With $N=a+b$ Bessel functions and $c \geq 0$, I define moments

$$
M(a, b, c):=\int_{0}^{\infty} I_{0}^{a}(t) K_{0}^{b}(t) t^{c} \mathrm{~d} t
$$

that converge for $b>a \geq 0$. For $b=a=N / 2$, we have convergence for $b>c+1$. The L-loop on-shell sunrise diagram in $D=2$ dimensions gives

$$
2^{L} M(1, L+1,1)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{k=1}^{L} \mathrm{~d} x_{k} / x_{k}}{\left(1+\sum_{i=1}^{L} x_{i}\right)\left(1+\sum_{j=1}^{L} 1 / x_{j}\right)-1}
$$

as an integral over Schwinger parameters. $M(2, L, 1)$ is obtained by cutting an internal line. To obtain $M(1, L+1,3)$ and $M(2, L, 3)$, we differentiate w.r.t. an external momentum, before taking the on-shell limit.

2.1 3-loop sunrise at $N=5$

In 2007, reciprocal PSLQ, inspired by Legendre, gave me the matrix

$$
\mathcal{M}_{5}:=\left[\begin{array}{ll}
M(1,4,1) & M(1,4,3) \\
M(2,3,1) & M(2,3,3)
\end{array}\right]=\left[\begin{array}{cc}
\pi^{2} C & \pi^{2}\left(\frac{2}{15}\right)^{2}\left(13 C-\frac{1}{10 C}\right) \\
\frac{\sqrt{15 \pi} C}{2} & \frac{\sqrt{15 \pi}}{2}\left(\frac{2}{15}\right)^{2}\left(13 C+\frac{1}{10 C}\right)
\end{array}\right] .
$$

The determinant $\operatorname{det} \mathcal{M}_{5}=2 \pi^{3} / \sqrt{3^{3} 5^{5}}$ is free of the 3-loop constant

$$
C:=\frac{\pi}{16}\left(1-\frac{1}{\sqrt{5}}\right)\left(\sum_{n=-\infty}^{\infty} e^{-n^{2} \pi \sqrt{15}}\right)^{4}
$$

that comes from the square of an elliptic integral [arXiv:0801.0891] at the 15 th singular value. The L-series for $N=5$ Bessel functions comes from a modular form of weight 3 and level 15 [arXiv:1604.03057]:

$$
\begin{aligned}
\eta_{n} & :=q^{n / 24} \prod_{k>0}\left(1-q^{n k}\right) \\
f_{3,15} & :=\left(\eta_{3} \eta_{5}\right)^{3}+\left(\eta_{1} \eta_{15}\right)^{3}=\sum_{n>0} A_{5}(n) q^{n} \\
L_{5}(s) & :=\sum_{n>0} \frac{A_{5}(n)}{n^{s}} \\
\Lambda_{5}(s) & :=\left(\frac{15}{\pi^{2}}\right)^{s / 2} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L_{5}(s)=\Lambda_{5}(3-s) \\
L_{5}(1) & =5 C=\frac{1}{48 \sqrt{5} \pi^{2}} \Gamma\left(\frac{1}{15}\right) \Gamma\left(\frac{2}{15}\right) \Gamma\left(\frac{4}{15}\right) \Gamma\left(\frac{8}{15}\right)
\end{aligned}
$$

with a product of Γ values from the Chowla-Selberg theorem.

2.2 The Laporta frontier at $N=6$

Here the modular form, found with Francis Brown in 2010, is

$$
f_{4,6}:=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}
$$

with weight 4 and level 6 . I discovered and checked to 1000 digits that

$$
2 M(3,3,1)=3 L_{6}(2), \quad 2 M(2,4,1)=3 L_{6}(3), \quad 2 M(1,5,1)=\pi^{2} L_{6}(2) .
$$

It is notable that the hypergeometric series in

$$
L_{6}(3)=\frac{\pi^{2}}{15}{ }_{4}{ }^{4} F_{3}\left(\begin{array}{ccc|c}
\frac{1}{3}, & \frac{1}{2}, & \frac{1}{2}, & \frac{2}{3} \\
\frac{5}{6}, & 1, & \frac{7}{6} & 1
\end{array}\right)
$$

does not appear in Laporta's final result, though $A_{3}:=20 L_{6}(3) / 3$ appeared at intermediate stages of his calculation. Thus 4-loop QED engages only the first row of the determinant [arXiv:1604.03057]

$$
\operatorname{det}\left[\begin{array}{ll}
M(1,5,1) & M(1,5,3) \\
M(2,4,1) & M(2,4,3)
\end{array}\right]=\frac{5 \zeta(4)}{32} .
$$

2.3 Kloosterman moments at $N=7$

With $N=7$ Bessel functions, the local factors at the primes in

$$
L_{7}(s)=\prod_{p} \frac{1}{Z_{7}\left(p, p^{-s}\right)}
$$

are given, for the good primes p coprime to 105 , by the cubic

$$
Z_{7}(p, T)=\left(1-\left(\frac{p}{105}\right) p^{2} T\right)\left(1+\left(\frac{p}{105}\right)\left(2 p^{2}-\left|\lambda_{p}\right|^{2}\right) T+p^{4} T^{2}\right)
$$

where $\left(\frac{p}{105}\right)= \pm 1$ is a Kronecker symbol and λ_{p} is a Hecke eigenvalue of a weight-3 newform with level 525 . For the primes of bad reduction, I obtained quadratics from Kloosterman moments in finite fields:
$Z_{7}(3, T)=1-10 T+3^{4} T^{2}, Z_{7}(5, T)=1-5^{4} T^{2}, Z_{7}(7, T)=1+70 T+7^{4} T^{2}$.
Then Anton Mellit suggested a functional equation

$$
\Lambda_{7}(s):=\left(\frac{105}{\pi^{3}}\right)^{s / 2} \Gamma\left(\frac{s-1}{2}\right) \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L_{7}(s)=\Lambda_{7}(5-s)
$$

that was validated at high precision and gave us the result

$$
24 M(2,5,1)=5 \pi^{2} L_{7}(2)
$$

2.4 Subtleties at $N=8$

With $N=8$ Bessel functions, the L-series comes from the modular form

$$
f_{6,6}:=\left(\frac{\eta_{2}^{3} \eta_{3}^{3}}{\eta_{1} \eta_{6}}\right)^{3}+\left(\frac{\eta_{1}^{3} \eta_{6}^{3}}{\eta_{2} \eta_{3}}\right)^{3}
$$

with weight 6 and level 6 . I discovered and checked to 1000 digits that

$$
M(4,4,1)=L_{8}(3), \quad 4 M(3,5,1)=9 L_{8}(4), \quad 4 M(2,6,1)=27 L_{8}(5) .
$$

Moreover, $4 M(1,7,1)=9 \pi^{2} L_{8}(4)$ determines the $\mathbf{6}$-loop sunrise integral.
There are two subtleties. First, Kloosterman moments at $N=8$ do not deliver the local factors directly. In the appendix, I remove factors that occurred at $N=4$. Secondly, there is an infinite family of sum rules:

$$
A(n):=\left(\frac{2}{\pi}\right)^{4} \int_{0}^{\infty}\left(\pi^{2} I_{0}^{2}(t)-K_{0}^{2}(t)\right) I_{0}(t) K_{0}^{5}(t)(2 t)^{2 n-1} \mathrm{~d} t
$$

delivers the integers of http://oeis.org/A262961 as was very recently proven by Yajun Zhou [http://arxiv.org/abs/1706.01068].

2.5 Vacuum integrals and non-critical modular L-series

In the modular cases $N=5,6,8$, L-series outside the critical strip are related to determinants that involve the vacuum integrals $M(0, N, 1)$:

$$
\begin{aligned}
\operatorname{det} \int_{0}^{\infty} K_{0}^{3}(t)\left[\begin{array}{rr}
K_{0}^{2}(t) & t^{2} K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2} I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{45}{8 \pi^{2}} L_{5}(4) \\
\operatorname{det} \int_{0}^{\infty} K_{0}^{4}(t)\left[\begin{array}{rr}
K_{0}^{2}(t) & t^{2} K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2} I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{27}{4 \pi^{2}} L_{6}(5) \\
\operatorname{det} \int_{0}^{\infty} K_{0}^{6}(t)\left[\begin{array}{rr}
K_{0}^{2}(t) & t^{2}\left(1-2 t^{2}\right) K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2}\left(1-2 t^{2}\right) I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{6075}{128 \pi^{2}} L_{8}(7) .
\end{aligned}
$$

2.6 Signpost

In work at $N>8$ with David Roberts these features are notable:
local factors from Kloosterman moments, sometimes with adjustment; guesses of Γ factors, signs and conductors in functional equations; empirical fits of L-series to determinants of Feynman integrals; quadratic relations between Bessel moments; sum rules when $4 \mid N$. We did not encounter modular forms or relations with vacuum integrals.

3 L-series up to 22 loops

Let $\Omega_{a, b}$ be the determinant of the $r \times r$ matrix with $M(a, b, 1)$ at top left, size $r=\lceil(a+b) / 4-1\rceil$, powers of t^{2} increasing to the right and powers of $I_{0}^{2}(t)$ increasing downwards. Thus $\Omega_{1,23}$ is a 5×5 determinant with the 22-loop sunrise integral $M(1,23,1)$ at top left and $M(9,15,9)$ at bottom right. With $N=4 r+4$ Bessel functions, we discovered that

$$
\begin{aligned}
L_{8}(4) & =\frac{2^{2} \Omega_{1,7}}{3^{2} \pi^{2}} \equiv \frac{4}{9 \pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{7}(t) t \mathrm{~d} t \\
L_{12}(6) & =\frac{2^{6} \Omega_{1,11}}{3^{4} \times 5 \pi^{6}} \\
L_{16}(8) & =\frac{2^{14} \Omega_{1,15}}{3^{7} \times 5^{2} \times 7 \pi^{12}} \\
L_{20}(10) & =\frac{2^{22} \times 11 \times \mathbf{1 3 1} \Omega_{1,19}}{3^{11} \times 5^{6} \times 7^{3} \pi^{20}} \quad \text { to } 44 \text { digits } \\
L_{24}(12) & =\frac{2^{29} \times \mathbf{1 2 5 5 8 8 7 7} \Omega_{1,23}}{3^{19} \times 5^{9} \times 7^{3} \times 11 \pi^{30}} \quad \text { to } 19 \text { digits, }
\end{aligned}
$$

where boldface highlights primes greater than N. We used Kloosterman sums over finite fields \mathbf{F}_{q} with $q<250000.25 \mathrm{GHz}$-years of work, on 50 cores, gave 44-digit precision for $L_{20}(10) . L_{24}(12)$ agrees up to 19 digits.

With a cut of a line in the diagram at top left of the matrix, we found

$$
\begin{aligned}
L_{8}(5) & =\frac{2^{2} \Omega_{2,6}}{3^{3}} \equiv \frac{4}{27} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{6}(t) t \mathrm{~d} t \\
L_{12}(7) & =\frac{2^{5} \times 11 \Omega_{2,10}}{3^{6} \times 5^{2} \pi^{2}} \\
L_{16}(9) & =\frac{2^{14} \times 13 \Omega_{2,14}}{3^{9} \times 5^{3} \times 7^{2} \pi^{6}} \\
L_{20}(11) & =\frac{2^{19} \times 17 \times 19 \times \mathbf{2 3} \Omega_{2,18}}{3^{13} \times 5^{7} \times 7^{3} \pi^{12}} \\
L_{24}(13) & =\frac{2^{27} \times 17 \times 19^{2} \times 23^{2} \times \mathbf{4 6 6 8 1} \Omega_{2,22}}{3^{23} \times 5^{12} \times 7^{4} \times 11^{2} \pi^{20}} .
\end{aligned}
$$

At $N=12,16,20$, with an odd sign in the functional equation, we found

$$
\begin{aligned}
-L_{12}^{\prime}(5) & =\frac{2^{4}\left(2^{6} \times \mathbf{2 9} \widehat{\Omega}_{2,10}+3 \Omega_{2,10} \log 2\right)}{3^{2} \times 7 \pi^{6}} \\
-L_{16}^{\prime}(7) & =\frac{2^{9}\left(2^{7} \times \mathbf{8 3} \widehat{\Omega}_{2,14}+3 \times 11 \Omega_{2,14} \log 2\right)}{3^{5} \times 5 \pi^{12}} \\
-L_{20}^{\prime}(9) & =\frac{2^{17} \times 17 \times 19\left(2^{9} \times 7 \times \mathbf{1 0 1} \widehat{\Omega}_{2,18}+5 \times 13 \Omega_{2,18} \log 2\right)}{3^{8} \times 5^{4} \times 7^{2} \times 11 \pi^{20}}
\end{aligned}
$$

for central derivatives, using enlarged determinants $\widehat{\Omega}_{2,4 r+2}$ of size $r+1$ with regularization of $M(2 r+2,2 r+2,2 r+1)$ at bottom right.

In the cases with $N=4 r+2$, we obtained

$$
\begin{aligned}
L_{6}(2) & \left.=\frac{2 \Omega_{1,5}}{\pi^{2}} \equiv \frac{2}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{5}(t) t \mathrm{~d} t \quad \text { [present in } \mathrm{a}_{4}\right] \\
L_{6}(3) & \left.=\frac{2 \Omega_{2,4}}{3} \equiv \frac{2}{3} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{4}(t) t \mathrm{~d} t \quad \text { [absent from a }{ }_{4}\right] \\
L_{10}(4) & =\frac{2^{7} \Omega_{1,9}}{3^{2} \pi^{6}} \\
L_{10}(5) & =\frac{2^{4} \Omega_{2,8}}{3 \times 5 \pi^{2}} \\
L_{14}(6) & =0 \\
L_{14}(7) & =\frac{2^{10} \times 11 \times 13 \Omega_{2,12}}{3^{6} \times 5^{2} \times 7 \pi^{6}} \\
L_{18}(8) & =\frac{2^{21} \times 17 \times 19 \Omega_{1,17}}{3^{5} \times 5^{4} \times 7 \pi^{20}} \\
L_{18}(9) & =\frac{2^{12} \times 13 \times 17 \times 41 \Omega_{2,16}}{3^{8} \times 5^{3} \times 7^{2} \pi^{12}} \\
L_{22}(10) & =0 \\
L_{22}(11) & =\frac{2^{23} \times 17 \times 19 \times 11621 \Omega_{2,20}}{3^{14} \times 5^{7} \times 7^{3} \pi^{20}}
\end{aligned}
$$

with central vanishing from an odd sign at $N=14$ and $N=22$.

For cases with odd N, we obtained

$$
\begin{aligned}
& L_{5}(2)=\frac{2^{2} \Omega_{2,3}}{3} \equiv \frac{4}{3} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{3}(t) t \mathrm{~d} t \\
& L_{7}(2)=\frac{2^{3} \times 3 \Omega_{2,5}}{5 \pi^{2}} \equiv \frac{24}{5 \pi^{2}} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{5}(t) t \mathrm{~d} t \\
& L_{9}(4)=\frac{2^{6} \Omega_{2,7}}{3 \times 5 \pi^{2}} \\
& L_{11}(4)=\frac{2^{8} \times 5 \Omega_{2,9}}{3 \times 7 \pi^{6}} \\
& L_{13}(6)=\frac{2^{7} \times 149 \Omega_{2,11}}{3^{3} \times 5 \times 7 \pi^{6}} \\
& L_{15}(6)=\frac{2^{8} \times 7 \times 53 \Omega_{2,13}}{3^{2} \times 5 \pi^{12}} \quad \text { to } 43 \text { digits } \\
& L_{17}(8)=\frac{2^{15} \times \mathbf{2 9} \Omega_{2,15}}{3^{5} \times 5^{2} \times 7 \pi^{12}} \quad \text { to } 23 \text { digits } \\
& L_{19}(8)=\frac{2^{14} \times \mathbf{1 0 9 3} \times 13171 \Omega_{2,17}}{3^{4} \times 5^{4} \times 7 \times 11 \pi^{20}} \quad \text { to } 14 \text { digits } .
\end{aligned}
$$

Comment: We have parallel results relating Bessel moments $M(a, b, c)$ with even c to L-series with local factors obtained from Kloosterman moments with a quadratic twist. Quantum theory seems not to use these.

4 Betti and de Rham matrices for all loops

Construction: Let v_{k} and w_{k} be the rational numbers generated by

$$
\begin{aligned}
\frac{J_{0}^{2}(t)}{C(t)} & =\sum_{k \geq 0} \frac{v_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{17 t^{2}}{54}+\frac{3781 t^{4}}{186624}+\ldots \\
\frac{2 J_{0}(t) J_{1}(t)}{t C(t)} & =\sum_{k \geq 0} \frac{w_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{41 t^{2}}{216}+\frac{325 t^{4}}{186624}+\ldots
\end{aligned}
$$

where $J_{0}(t)=I_{0}(\mathrm{i} t), J_{1}(t)=-J_{0}^{\prime}(t)$ and

$$
C(t):=\frac{32\left(1-J_{0}^{2}(t)-t J_{0}(t) J_{1}(t)\right)}{3 t^{4}}=1-\frac{5 t^{2}}{27}+\frac{35 t^{4}}{2304}-\frac{7 t^{6}}{9600}+\ldots
$$

We obtain bivariate polynomials by the recursion

$$
\begin{aligned}
H_{s}(y, z) & =z H_{s-1}(y, z)-(s-1) y H_{s-2}(y, z) \\
& -\sum_{k=1}^{s-1}\binom{s-1}{k}\left(v_{k} H_{s-k}(y, z)-w_{k} z H_{s-k-1}(y, z)\right)
\end{aligned}
$$

for $s>0$, with $H_{0}(y, z)=1$. We use these to define

$$
d_{s}(N, c):=\frac{H_{s}(3 c / 2, N+2-2 c)}{4^{s} s!}
$$

Matrices: We construct rational de Rham matrices, with elements

$$
D_{N}(a, b):=\sum_{c=-b}^{a} d_{a-c}(N,-c) d_{b+c}(N, c) c^{N+1}
$$

and a and b running from 1 to $k=\lceil N / 2-1\rceil$.
We act on those, on the left, with period matrices whose elements are

$$
\begin{aligned}
P_{2 k+1}(u, a) & :=\frac{(-1)^{a-1}}{\pi^{u}} M(k+1-u, k+u, 2 a-1) \\
P_{2 k+2}(u, a) & :=\frac{(-1)^{a-1}}{\pi^{u+1 / 2}} M(k+1-u, k+1+u, 2 a-1)
\end{aligned}
$$

and on the right with their transposes, to define Betti matrices

$$
B_{N}:=P_{N} D_{N} P_{N}^{\mathrm{tr}} .
$$

Conjecture 1: The Betti matrices have rational elements given by

$$
\begin{aligned}
B_{2 k+1}(u, v) & =(-1)^{u+k} 2^{-2 k-2}(k+u)!(k+v)!Z(u+v) \\
B_{2 k+2}(u, v) & =(-1)^{u+k} 2^{-2 k-3}(k+u+1)!(k+v+1)!Z(u+v+1) \\
Z(m) & =\frac{1+(-1)^{m}}{(2 \pi)^{m}} \zeta(m)
\end{aligned}
$$

Comment: This gives quadratic relations between Feynman periods. A parallel conjecture for even Bessel moments relates to twisted L-series.

Conjecture 2: For integers $b>0$ and $c \geq 0$, with $b+c$ odd,

$$
S(b, c):=\left(\frac{2}{\pi}\right)^{b+1} \int_{0}^{\infty} \Im\left(\left[\pi I_{0}(t) K_{0}(t)+\mathrm{i} K_{0}^{2}(t)\right]^{b}\right) t^{c} \mathrm{~d} t
$$

is a rational number that vanishes if and only if $b>c+1$. For $j \geq 0$,

$$
Q_{j}(x):=4^{j} j!S(2 x, 2 x+2 j-1)
$$

is a monic rational polynomial in x, of degree j, with $Q_{j}(0)=\delta_{j, 0}$.
Comment: This gives linear relations for odd moments with $N=4 r+4$. It gives relations for even moments with $N=4 r+2$ in the twisted case. Both sets come from kernels of singular Betti and de Rahm matrices. The conjecture on $Q_{j}(x)$ leads to a recursion for determining $S(b, c)$.

Mathematical health warning

This work is highly empirical. Little of what I have presented for $N>5$ is proven. It took almost a decade to prove some of the results at $N=5$. Stop press [6 June]: Zhou's work makes proof of Conjecture 2 feasible.

Summary

1. QED at 4 loops involves Bessel moments and a weight-4 L-series.
2. The L-series for 5,6 and 8 Bessel functions are modular. This seems to be necessary for relating vacuum integrals to non-critical L-series.
3. Relations between determinants of Feynman integrals and L-series have been discovered up to 22 loops and presumably go on for ever.
4. We have parallel results for even moments and twisted L-series.
5. Legendre's relation $E K^{\prime}+K\left(E^{\prime}-K^{\prime}\right)=\pi / 2$ for elliptic integrals foreshadows quadratic relations of the form $P_{N} D_{N} P_{N}^{\mathrm{tr}}=B_{N}$ with period, de Rham and Betti matrices that we have specified.
6. With $N=4 r+4$ Bessel functions, the kernels of the singular matrices B_{N} and D_{N} give linear relations between Feynman periods.

I thank skilful colleagues and generous hosts at recent meetings in Creswick (Victoria), Newcastle (NSW), Mainz and Oxford for kind help.

Appendix: Kloosterman sums over finite fields

For $a \in \mathbf{F}_{q}$, with $q=p^{k}$, we define Kloosterman sums

$$
K(a):=\sum_{x \in \mathbf{F}_{q}^{*}} \exp \left(\frac{2 \pi \mathrm{i}}{p} \operatorname{Trace}\left(x+\frac{a}{x}\right)\right)
$$

with a trace of Frobenius in \mathbf{F}_{q} over \mathbf{F}_{p}. Then we obtain integers

$$
\begin{gathered}
c_{N}(q):=-\frac{1+S_{N}(q)}{q^{2}} \\
S_{N}(q):=\sum_{a \in \mathbf{F}_{q}^{*}} \sum_{k=0}^{N}[g(a)]^{k}[h(a)]^{N-k}
\end{gathered}
$$

with $K(a)=-g(a)-h(a)$ and $g(a) h(a)=q$. Then

$$
Z_{N}(p, T)=\exp \left(-\sum_{k>0} \frac{c_{N}\left(p^{k}\right)}{k} T^{k}\right)
$$

is a polynomial in T. For $N<8$, the appropriate L-series is

$$
L_{N}(s)=\prod_{p} \frac{1}{Z_{N}\left(p, p^{-s}\right)}
$$

with a modification at $N=8$:

$$
L_{8}(s)=\prod_{p} \frac{Z_{4}\left(p, p^{2-s}\right)}{Z_{8}\left(p, p^{-s}\right)} .
$$

