# Fate of the universe: gauge independence and advanced precision

### Bernd Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

Workshop on Multi-loop Calculations: Methods and Applications 7–8 June 2017



In collaboration w/ A. Bednyakov, F. Bezrukov, M. Yu. Kalmykov, A. Pikelner, M. Shaposhnikov, and O. Veretin.

| Introduction<br>00000 | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>000 |
|-----------------------|--------------------|---------------------|---------------------------|----------------|
| Outline               |                    |                     |                           |                |

## Introduction

- 2 Running & Matching
- **3** EW vacuum stability
- **4** Cosmological implications



| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| •0000        | 00000000000        | 00000000            | 00                        | 000     |
|              |                    |                     |                           |         |

## Introduction



The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider."

| Introduction<br>0000 | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|----------------------|--------------------|---------------------|---------------------------|---------|
| Higgs pot            | ential             |                     |                           |         |

SM Higgs sector: complex scalar doublet  $\Phi$  $\mathscr{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - V(|\Phi|^2), \qquad V = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$ Unbroken phase:  $\mu^2 > 0$ Broken phase:  $\mu^2 < 0$ After SSB and Higgs mechanism:  $\Phi = \begin{pmatrix} 0 \\ \frac{v+H}{\sqrt{2}} \end{pmatrix}$  $\mathscr{L} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H), \qquad V = -\frac{\lambda v^{4}}{\lambda} + \lambda v^{2} H^{2} + \lambda v H^{3} + \frac{\lambda}{\lambda} H^{4}$ •  $\frac{\partial V}{\partial H}\Big|_{H=0} = 0 \quad \rightsquigarrow \quad -\mu^2 = \lambda v^2 \equiv \frac{m_H^2}{2}$ •  $\frac{gv}{2} \equiv m_W \quad \rightsquigarrow \quad v = 2^{-1/4} G_F^{-1/2} = 246.220 \text{ GeV}$ •  $m_H$  is free parameter.

So far, bare fields and parameters.

## Properties of the Higgs boson

$$\mathscr{L}_{H} = \left(m_{W}^{2}W_{\mu}^{+}W^{-\mu} + \frac{m_{Z}^{2}}{2}Z_{\mu}Z^{\mu}\right)\left(1 + \frac{H}{v}\right)^{2} - \sum_{f}m_{f}\bar{f}f\left(1 + \frac{H}{v}\right) - \frac{m_{H}^{2}}{2}H^{2}\left(1 + \frac{H}{2v}\right)^{2}$$

| Quantum numbers | Q = 0<br>$J^{PC} = 0^{++}$                                                                                                                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEV             | $v = 2^{-1/4} G_F^{-1/2} \approx 246.22 \text{ GeV}$                                                                                                                                                 |
| Couplings       | $g_{VVH} = 2^{5/4} G_F^{1/2} m_V^2 \qquad V = W, Z$ $g_{VVHH} = 2^{3/2} G_F m_V^2$ $g_{ffH} = 2^{3/4} G_F^{1/2} m_f$ $\lambda = 2^{-1/2} G_F m_H^2$ $g_{HHH} = 6 \nu \lambda$ $g_{HHHH} = 6 \lambda$ |
| Mass            | M <sub>H</sub> is free parameter                                                                                                                                                                     |

Outlook

000

## Mass measurements



 $M_H = (125.09 \pm 0.24) \text{ GeV}$ ATLAS & CMS, PRL114(2015)191803



## EW precision tests, triviality & vacuum stability



- $m_H = (125.09 \pm 0.24)$  GeV agrees w/ EW precision data.
- Triviality bound satisfied.
- How about vacuum stability bound?

## Renormalizaton: RG evolution

Cosmological applications require reliable predictions over very large range of scales:  $v \leq \mu \leq M_P$ 

Use  $\overline{MS}$  renromalization scheme: running couplings

 $\lambda(\mu), y_t(\mu), g_s(\mu), \ldots$ 

Two-step procedure: 1. RG evolution:

$$\mu^{2} \frac{d\lambda(\mu)}{d\mu^{2}} = \beta_{\lambda} = \frac{1}{16\pi^{2}} (12\lambda^{2} + 6\lambda y_{t}^{2} - 3y_{t}^{4}) + \cdots$$
$$\mu^{2} \frac{dy_{t}(\mu)}{d\mu^{2}} = \beta_{y_{t}} = \frac{1}{16\pi^{2}} y_{t} \left(\frac{9}{4}y_{t}^{2} - 4g_{s}^{2}\right) + \cdots$$
$$\mu^{2} \frac{dg_{s}(\mu)}{d\mu^{2}} = \beta_{g_{s}} = \frac{1}{16\pi^{2}} g_{s}^{3} \left(-\frac{11}{2} + \frac{n_{f}}{3}\right) + \cdots$$

 $eta_{\lambda}^{(3)},eta_{y_t}^{(3)}$ 

 $egin{aligned} & eta_{...}^{(3)}, eta_{g_s, y_t}^{(3)} \ & eta_{g_s}^{(3)} \end{aligned}$ 

Chetyrkin, Zoller, JHEP06(2012)033; 04(2013)091 Bednyakov *et al.*, JHEP01(2013)017; PLB722(2013)336; NPB875(2013)552 Mihaila *et al.*, PRL108(2012)151602; PRD86(2012)096008 Tarasov *et al.*, PLB93(1980)429

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 00000000000        | 00000000            | 00                        | 000     |

## Threshold corrections

2. Matching at  $\mu = \mathcal{O}(v)$ :  $\lambda(\mu) = 2^{-1/2} G_F m_{\mu}^2 [1 + \delta_{\mu}^{(1)}(\mu) + \cdots]$  $\delta_{H}^{(1)}(\mu) = \frac{G_{F}m_{H}^{2}}{8\pi^{2}\sqrt{2}} \left| 6\ln\frac{\mu^{2}}{m_{H}^{2}} + \frac{25}{2} - \frac{3}{2}\pi\sqrt{3} + \mathcal{O}\left(\frac{m_{Z}^{2}}{m_{H}^{2}}\ln\frac{m_{H}^{2}}{m_{Z}^{2}}\right) \right|$ Sirlin, Zucchini, NPB266(1986)389  $y_t(\mu) = 2^{3/4} G_{\mu}^{1/2} m_t [1 + \delta_t^{(1)}(\mu) + \cdots]$  $\delta_t^{(1)}(\mu) = \frac{Q_t^2 \alpha + C_F \alpha_s(\mu)}{4\pi} \left( -3 \ln \frac{\mu^2}{m_t^2} - 4 \right)$  $+\frac{G_F m_t^2}{8\pi^2 \sqrt{2}} \left| \frac{9}{2} \ln \frac{\mu^2}{m_t^2} + \frac{11}{2} - 2\pi \frac{m_H}{m_t} + \mathcal{O}\left( \frac{m_H^2}{m_t^2} \ln \frac{m_t^2}{m_t^2} \right) \right|$ Hempfling, BK, PRD51(1995)1386  $\delta_{H}^{(\alpha\alpha_{s})}, \delta_{t}^{(\alpha\alpha_{s})}$ 

 $\delta_{H}^{(\alpha^{2})}, \delta_{t}^{(\alpha^{2})} = \delta_{H}^{(y_{t}^{4})}, \delta_{t}^{(y_{t}^{4})} = 0$   $\delta_{H}^{(\alpha^{2})}, \delta_{t}^{(\alpha^{2})} = 0$   $\delta_{X}^{(\alpha^{2})} \text{ for all } x = 0$ 

Bezrukov, Kalmykov, BK, Shaposhnikov, JHEP10(2012)140 Degrassi *et al.*, JHEP08(2012)098; BK, Veretin, NPB885(2014)459 Buttazzo *et al.*, JHEP12(2013)089

BK, Veretin, Pikelner, NPB896(2015)19

## MS renormalization scheme

Parameters of the symmetric phase:  $g, g', \lambda, m_{\phi}, y_f$ Parameters of the broken phase:  $e, m_W, m_Z, m_H, m_f$ Tree-level relationships:

$$\frac{1}{e^2} = \frac{1}{g^2} + \frac{1}{g'^2}$$
$$\frac{4m_W^2}{v^2} = g^2 \qquad \frac{4m_Z^2}{v^2} = g^2 + g'^2 \qquad \frac{m_H^2}{2v^2} = \lambda \qquad \frac{2m_f^2}{v^2} = y_f^2$$
$$\frac{1}{v^2} = \frac{\lambda}{-m_\phi^2} = \frac{e^2}{4m_W^2(1 - m_W^2/m_Z^2)}$$

Treat as exact in the  $\overline{MS}$  renormalization scheme.

## On-shell renormalization scheme

#### • Pole masses:

$$p^{2} = M_{B}^{2}: 0 = p^{2} - m_{B,0}^{2} - \Pi_{BB}(p^{2}) \qquad (B = H, W)$$

$$p^{2} = M_{Z}^{2}: 0 = p^{2} - m_{Z,0}^{2} - \Pi_{ZZ,T}(p^{2}) - \frac{\Pi_{\gamma Z,T}^{2}(p^{2})}{p^{2} - \Pi_{\gamma \gamma,T}(p^{2})}$$

$$p = m_{f}: 0 = p - m_{f,0} - \Sigma_{f}(p)$$

• Fine-structure constant:  $\alpha_{Th}$  absorbs radiative corrections to Thomson scattering. Induces large corrections  $\propto \alpha \ln(q^2/m_\ell^2)$  and hadronic uncertainties!  $\rightsquigarrow$  Use instead Sirlin, PRD22(1980)971  $G_F = \frac{\pi \alpha_{Th}}{\sqrt{2}M_W^2(1 - M_W^2/M_Z^2)}(1 + \Delta r)$ 

| Introduction<br>00000 | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>000 |
|-----------------------|--------------------|---------------------|---------------------------|----------------|
| Matching              |                    |                     |                           |                |

• Masses:

$$m_0^2 = M^2 - \Pi(M^2) = m^2(\mu) \left(1 + \frac{Z^{(1)}}{\varepsilon} + \frac{Z^{(2)}}{\varepsilon^2} + \cdots\right)$$
$$Z^{(j)} = \frac{g^2}{16\pi^2} Z^{(j)}_{\alpha} + \frac{g^2}{16\pi^2} \frac{g_s^2}{16\pi^2} Z^{(j)}_{\alpha\alpha_s} + \left(\frac{g^2}{16\pi^2}\right)^2 Z^{(j)}_{\alpha^2} + \cdots$$

• Couplings:

$$2^{1/2}G_F = \frac{1 + \Delta \overline{r}(\mu)}{v^2(\mu)}$$
$$\frac{e^2}{8m_W^2(1 - m_W^2/m_Z^2)}(1 + \Delta \overline{r}) = \left[\sqrt{Z_{2,e}Z_{2,v_e}Z_{2,\mu}Z_{2,\nu_{\mu}}}A(e + v_e \to \mu + v_{\mu})\right]_{\text{hard}}$$

hard: Nullify external four-momenta and light-fermion masses before loop integration. Awramik *et al.*, PRD68(2003)053004

## Threshold corrections

#### • Couplings:

$$\begin{split} g^2(\mu) &= 2^{5/2} G_F M_W^2 [1 + \delta_W(\mu)] \\ g^2(\mu) + g'^2(\mu) &= 2^{5/2} G_F M_Z^2 [1 + \delta_Z(\mu)] \\ e^2(\mu) &= 2^{5/2} G_F M_W^2 [1 + \delta_W(\mu)] \left[ 1 - \frac{M_W^2}{M_Z^2} \frac{1 + \delta_W(\mu)}{1 + \delta_Z(\mu)} \right] \\ \lambda(\mu) &= 2^{-1/2} G_F M_H^2 [1 + \delta_H(\mu)] \\ \gamma_f(\mu) &= 2^{3/4} G_F^{1/2} M_f [1 + \delta_F(\mu)] \\ g_s^2(\mu) &= 4\pi \alpha_s^{(5)}(\mu) [1 + \delta_{\alpha_s}(\mu)] \end{split}$$

• Masses:

 $m_B^2(\mu) = M_B^2[1 + \Delta \overline{r}(\mu)][1 + \delta_B(\mu)] \qquad B = W, Z, H$  $m_f(\mu) = M_f[1 + \Delta \overline{r}(\mu)]^{1/2}[1 + \delta_f(\mu)] \qquad f = t, b$ 

Exact two-loop results. BK, Veretin, Pikelner, NPB896(2015)19

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 00000000000        | 00000000            | 00                        | 000     |

## **Typical Feynman diagrams**



| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>000 |
|--------------|--------------------|---------------------|---------------------------|----------------|
| Tools        |                    |                     |                           |                |

#### Packages used:

- Generation of diagrams: QGRAF, DIANA Nogueira, Tentyukov
   Reduction: TARCER (*Mathematica*) Mertig → Gauge invariance upon inclusion of all tadpoles √
- Numerical evaluation of master integrals: TSIL (C++) Martin

#### Program library created: mr for matching and running (C++)BK, Pikelner, Veretin, CPC206(2016)84

- Matching @ 2-loop EW & 4-loop QCD level
- RG evolution @ 3-loop EW & 4-loop QCD level

Available for download from URL: http://apik.github.io/mr/

## Numerical results

#### • Corrections to $\delta_H(M_t)$ in 10<sup>-4</sup>

| M <sub>H</sub> [GeV] | $\mathscr{O}(\alpha)$ | $\mathscr{O}(\alpha \alpha_s)$ | $\mathscr{O}(\alpha^2)$ | total  |
|----------------------|-----------------------|--------------------------------|-------------------------|--------|
| 124                  | -114.8                | -107.5                         | -26.6 (-29.1)           | -248.7 |
| 125                  | -114.5                | -105.2                         | -26.4 (-29.2)           | -246.1 |
| 126                  | _114.1                | -103.1                         | -26.3 (-29.3)           | -243.5 |

### • Corrections to $\delta_t(M_t)$ in $10^{-4}$

| <i>M<sub>H</sub></i> [GeV] | QCD    | $\mathscr{O}(\alpha)$ | $\mathscr{O}(\alpha \alpha_s)$ | $\mathscr{O}(\alpha^2)$ | total  |
|----------------------------|--------|-----------------------|--------------------------------|-------------------------|--------|
| 124                        | -599.3 | 13.5                  | -4.4                           | 2.7 (3.1)               | -587.4 |
| 125                        | -599.3 | 13.2                  | -4.3                           | 2.7 (3.1)               | -587.7 |
| 126                        | -599.3 | 12.9                  | -4.2                           | 2.7 (3.1)               | -587.9 |

• Corrections to  $\delta_b(M_b)$ 

 $\{1 + \delta_b(M_b)\}_{\text{QCD},O(\alpha),O(\alpha\alpha_s),O(\alpha^2)} =$ 

1 - 0.1728 - 0.0190 - 0.0112 + 0.0032(0.0033)

BK, Pikelner, Veretin, NPB896(2015)19

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>000 |
|--------------|--------------------|---------------------|---------------------------|----------------|
| Numer        | ical results       |                     |                           |                |



## Role of tadpoles



- Tadpole is gauge dependent and  $\propto 1/M_H^{2n}$  for  $M_H \rightarrow 0$ .
- Adjust vev  $v^0 = \sqrt{-(m_{\Phi}^0)^2/\lambda^0}$  to eliminate term  $\propto H$  in bare  $\mathscr{L}$ . Hempfling, BK, PRD51(1995)1386
- No tadpole counterterm.
- Include tadpoles order by order to ensure finiteness and gauge independence.
- $\Delta \overline{r}(\mu)$  and  $\delta_x(\mu)$  are gauge independent through  $\mathscr{O}(\alpha^2)$ .
- At  $\mathscr{O}(\alpha^2)$ ,  $\delta_x(\mu) \propto M_H^0$  for x = W, Z, f;  $\delta_H(\mu) \propto M_H^{-2}$ ;  $\Delta \overline{r}(\mu) \propto M_H^{-4}$  for  $M_H \to 0$ .
- $m_f(\mu)$  gauge independent, but receive large EW corrections.  $\rightsquigarrow$ Use instead Jegerlehner, Kalmykov, BK, PLB722(2013)123  $m_f^Y(\mu) = 2^{-3/4} G_F^{-1/2} y_f(\mu) = M_f[1 + \delta_f(\mu)] = m_f(\mu)[1 + \Delta \overline{r}(\mu)]^{-1/2}.$

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>000 |
|--------------|--------------------|---------------------|---------------------------|----------------|
| Tadpole of   | ancellation        |                     |                           |                |

• Consider  $m_f(\mu)$  and  $y_f(\mu)$  at  $\mathscr{O}(\alpha)$  Hempfling, BK, PRD51(1995)1386

 $m_{f}(\mu) = M_{f}(1 + \delta M_{f}/M_{f})_{\overline{\text{MS}}}$   $y_{f}(\mu) = 2^{3/4} G_{F}^{1/2} M_{f}(1 + \delta M_{f}/M_{f} - \delta v/v)_{\overline{\text{MS}}}$   $\delta M_{f}/M_{f} = \text{Re}[\Sigma_{V}^{f}(M_{f}^{2}) + \Sigma_{S}^{f}(M_{f}^{2})] - 2^{1/4} G_{F}^{1/2} T/M_{H}^{2}$  $\delta v/v = [\Pi_{W}(0)/M_{W}^{2} + E]/2 - 2^{1/4} G_{F}^{1/2} T/M_{H}^{2}$ 

- Exact tadpole cancellation also in  $\mathcal{O}(\alpha \alpha_s)$ . Jegerlehner, Kalmykov, NPB676(2004)365; BK, Piclum, Steinhauser, NPB695(2004)199
- Incomplete tadpole cancellation in 𝒪(α<sup>2</sup>) BK, Veretin, NPB885(2014)459; BK, Pikelner, Veretin, NPB896(2015)19
- Similar for  $\lambda(\mu)$ . Sirlin, Zucchini, NPB266(1986)389; Bezrukov *et al.*, JHEP01(2012)140

## Running top and bottom masses

• Corrections to  $m_t(M_t) - M_t$  in GeV

| M <sub>H</sub> [GeV] | QCD    | $\mathscr{O}(\alpha)$ | $\mathscr{O}(\alpha \alpha_{s})$ | $\mathscr{O}(\alpha^2)$ | total |
|----------------------|--------|-----------------------|----------------------------------|-------------------------|-------|
| 124                  | -10.38 | 12.08                 | -0.39                            | -0.99 (-0.47)           | 0.32  |
| 125                  | -10.38 | 11.88                 | -0.39                            | -0.96 (-0.45)           | 0.14  |
| 126                  | -10.38 | 11.67                 | -0.38                            | -0.94 (-0.44)           | -0.03 |

• Corrections to  $m_t^{\gamma}(M_t) - M_t$  in GeV

| <i>M<sub>H</sub></i> [GeV] | QCD    | $\mathscr{O}(\alpha)$ | $\mathscr{O}(\alpha \alpha_s)$ | $\mathscr{O}(\alpha^2)$ | total  |
|----------------------------|--------|-----------------------|--------------------------------|-------------------------|--------|
| 124                        | -10.38 | 0.234                 | -0.076                         | 0.047 (0.054)           | -10.17 |
| 125                        | -10.38 | 0.229                 | -0.075                         | 0.047 (0.054)           | -10.18 |
| 126                        | -10.38 | 0.223                 | -0.073                         | 0.047 (0.054)           | -10.18 |

- Corrections to  $m_b(M_b) M_b$   $\{m_b(M_b) - M_b\}_{QCD,O(\alpha),O(\alpha\alpha_s),O(\alpha^2)} =$ -0.85 - 1.90 - 1.53 + 1.75 (1.80) GeV
- Corrections to  $m_b^{\gamma}(M_b) M_b$ 
  - $\{m_b^{Y}(M_b) M_b\}_{QCD,O(\alpha),O(\alpha\alpha_s),O(\alpha^2)} = -0.847 0.093 0.055 + 0.016(0.016) \text{ GeV}$

 $\rightarrow m_q^{\gamma}$  is much more perturbatively stable than  $m_q(M_q)$ .





Determine  $\mu^{cri}$  and  $M_H^{cri}$  for given  $M_t$  (or  $M_t^{cri}$  for given  $M_H$ ) so that

$$\lambda(\mu^{\mathrm{cri}}) = eta_{\lambda}(\lambda(\mu^{\mathrm{cri}})) = \mathbf{0}$$

→ Vacuum is stable for  $M_H \ge M_H^{cri}$  (or  $M_t \le M_t^{cri}$ ). Caveat:  $\mu^{cri}, M_H^{cri}, M_t^{cri}$  are gauge independent, but (slightly) scheme dependent. → theoretical uncertainty





Determine  $\tilde{\mu}^{cri}$  and  $\tilde{M}_{H}^{cri}$  for given  $M_{t}$  (or  $\tilde{M}_{t}^{cri}$  for given  $M_{H}$ ) so that

 $V_{\rm eff}(\tilde{\mu}^{\rm cri}) = V_{\rm eff}(v) \approx 0, \qquad V_{\rm eff}'(\tilde{\mu}^{\rm cri}) = 0$ 

→ Vacuum is stable for  $M_H \ge \widetilde{M}_H^{cri}$  (or  $M_t \le \widetilde{M}_t^{cri}$ ). Caveat:  $\widetilde{\mu}^{cri}$ ,  $\widetilde{M}_H^{cri}$ ,  $\widetilde{M}_t^{cri}$  are gauge dependent! Degassi *et al.*, JHEP08(2012)098; Buttazzo *et al.*, JHEP12(2013)089

## Consistent approach to effective potential

 Reorganize V<sub>eff</sub>(H) in powers of h so that expansion coefficients are gauge independent at its extrema Andreassen *et al.*, PRL113(2014)241801

• Solve 
$$V'_{\text{eff}}(H) = 0$$
 for  $H = \tilde{\mu}^{\text{cri}}$ :

$$\begin{split} \lambda &= \frac{1}{256\pi^2} \left[ (g^2 + g'^2)^2 \left( 1 - 3\ln\frac{g^2 + g'^2}{4} \right) \right. \\ &+ 2g'^4 \left( 1 - 3\ln\frac{g'^2}{4} \right) - 48y_t^4 \left( 1 - \ln\frac{y_t^2}{4} \right) \right] \end{split}$$

- Require that  $V_{\min}^{\text{NLO}} = V_{\text{eff}}^{\text{NLO}}(\tilde{\mu}^{\text{cri}}) \ge 0$  for  $M_H \ge \tilde{M}_H^{\text{cri}}$  (or  $M_t \le \tilde{M}_t^{\text{cri}}$ ) e.g. in the Landau gauge
- Caveat:  $\tilde{\mu}^{cri} > M_P!$

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 000000000000       | 0000000             | 00                        | 000     |
|              |                    |                     |                           |         |

# **Critical parameters**

$$X = X_0 + \Delta X_{\alpha_s} \frac{\alpha_s^{(5)}(M_Z) - \alpha_s^{(5), \exp}(M_Z)}{\Delta \alpha_s^{(5), \exp}(M_Z)} + \Delta X_M \frac{M - M^{\exp}}{\Delta M^{\exp}} \pm \delta X_{par} + \delta X_{\mu}^{\pm} \pm \delta X_{tru}$$

| X                                     | <i>X</i> <sub>0</sub> | $\Delta X_{\alpha_s}$ | $\Delta X_M$ | $\delta X_{\rm par}$ | $\delta X^+_\mu$ | $\delta X_{\mu}^{-}$ | $\delta X_{\rm tru}$ |
|---------------------------------------|-----------------------|-----------------------|--------------|----------------------|------------------|----------------------|----------------------|
| $M_t^{\rm cri}$                       | 171.44                | 0.23                  | 0.20         | 0.001                | -0.36            | 0.17                 | -0.02                |
| $\log_{10} \mu_t^{\rm cri}$           | 17.752                | -0.051                | 0.083        | 0.007                | 0.007            | -0.006               | -0.002               |
| $M_{H}^{\rm cri}$                     | 129.30                | -0.49                 | 1.79         | 0.002                | 0.72             | -0.33                | 0.04                 |
| $\log_{10} \mu_H^{\rm cri}$           | 18.512                | -0.158                | 0.381        | 0.008                | 0.173            | -0.082               | 0.008                |
| $\widetilde{M}_t^{\rm cri}$           | 171.64                | 0.23                  | 0.20         | 0.001                | -0.36            | 0.17                 | -0.02                |
| $\log_{10} \tilde{\mu}_t^{\rm cri}$   | 21.442                | -0.059                | 0.094        | 0.005                | -0.083           | 0.022                | 0.002                |
| $\widetilde{M}_{H}^{\mathrm{cri}}$    | 128.90                | -0.49                 | 1.79         | 0.003                | 0.73             | -0.34                | 0.04                 |
| $\log_{10} \tilde{\mu}_{H}^{\rm cri}$ | 22.209                | -0.181                | 0.436        | 0.007                | 0.092            | -0.062               | 0.013                |

## Importance of higher orders

- $\mathcal{O}(\alpha^2)$  corrections to all  $\delta_i(\mu)$  BK, Pikelner, Veretin, NPB896(2015)19
- $\mathscr{O}(\alpha_s \alpha)$  and  $\mathscr{O}(\alpha_s^4)$  corrections to  $\delta_{\alpha_s}(\mu)$  Bednyakov, PLB741(2015)262; Schröder, Steinhauser, JHEP01(2006)051; Chetyrkin, Kühn, Sturm, NPB744(2006)121; BK *et al.*, PRL97(2006)042001
- $\mathscr{O}(\alpha_s^4)$  corrections to  $\delta_q(\mu)$  Marquard *et al.*, PRL114(2015)142002

| X                                  | $X_0 + \delta X_\mu^\pm$          | w/o $\delta_i^{O(lpha^2)}$         | w/o $\delta^{O(lpha lpha_s, lpha_s^4)}_{lpha_s}$ | w/o $\delta_q^{O(lpha_s^4)}$      |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|
| $M_t^{\rm cri}$                    | $171.44^{-0.36}_{+0.17}$          | $171.55^{-0.47}_{+1.04}$           | $171.43^{-0.36}_{+0.17}$                         | $171.24^{-0.38}_{+0.19}$          |
| $\log_{10}\mu_t^{ m cri}$          | $17.752\substack{+0.007\\-0.006}$ | $17.783\substack{+0.062\\-0.008}$  | $17.754\substack{+0.007\\-0.006}$                | $17.751\substack{+0.007\\-0.007}$ |
| M <sub>H</sub> <sup>cri</sup>      | $129.30_{-0.33}^{+0.72}$          | $129.06\substack{+0.95\\-2.14}$    | $129.32_{-0.33}^{+0.73}$                         | $129.72_{-0.38}^{+0.76}$          |
| $\log_{10} \mu_H^{\rm cri}$        | $18.512\substack{+0.173\\-0.082}$ | 18.495 <sup>+0.226</sup><br>_0.531 | $18.518^{+0.174}_{-0.082}$                       | $18.602\substack{+0.184\\-0.094}$ |
| $\widetilde{M}_t^{\rm cri}$        | $171.64_{+0.17}^{-0.36}$          | $171.74_{+1.04}^{-0.46}$           | $171.63_{+0.17}^{-0.36}$                         | $171.43_{+0.19}^{-0.37}$          |
| $\log_{10} \tilde{\mu}_t^{ m cri}$ | $21.442_{+0.022}^{-0.083}$        | $21.485_{+0.343}^{-0.085}$         | $21.445_{+0.022}^{-0.083}$                       | $21.441^{-0.072}_{+0.014}$        |
| $\widetilde{M}_{H}^{\rm cri}$      | $128.90_{-0.34}^{+0.73}$          | $128.67^{+0.95}_{-2.15}$           | $128.92_{-0.34}^{+0.73}$                         | $129.32_{-0.38}^{+0.76}$          |
| $\log_{10} \tilde{\mu}_H^{ m cri}$ | $22.209\substack{+0.092\\-0.062}$ | $22.201\substack{+0.146\\-0.171}$  | $22.217_{-0.062}^{+0.094}$                       | $22.312\substack{+0.113\\-0.082}$ |

## Combined results

PRL 115, 201802 (2015)



week ending 13 NOVEMBER 2015

#### ഴ

#### Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision

A. V. Bednyakov,<sup>1</sup> B. A. Kniehl,<sup>2</sup> A. F. Pikelner,<sup>2</sup> and O. L. Veretin<sup>2</sup> <sup>1</sup>Joint Institute for Nuclear Research, 141980 Dubna, Russia

<sup>2</sup>II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Received 30 July 2015; revised manuscript received 24 August 2015; published 9 November 2015)

- From  $\lambda(\mu)$ :  $M_t^{\text{cri}} = (171.44 \pm 0.30^{+0.17}_{-0.36})$  GeV
- From  $V_{\rm eff}(H)$ :  $\widetilde{M}_t^{\rm cri} = (171.64 \pm 0.30^{+0.17}_{-0.36})$  GeV
- Combination:  $\widehat{M}_{t}^{cri} = (171.54 \pm 0.30^{+0.26}_{-0.41}) \text{ GeV}$
- Experiment:  $M_t^{MC} = (172.38 \pm 0.66)$  GeV ATLAS & CMS, arXiv:1512.02244 [hep-ex]

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 000000000000       | 0000000000          | 00                        | 000     |

## *M<sub>t</sub>* Measurements



| Introduction Runni | ing & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------------|----------------|---------------------|---------------------------|---------|
| 00000 0000         | 000000000      | 000000000           | 00                        | 000     |

## **RG** flow



| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 000000000000       | 0000000             | 00                        | 000     |

## Phase diagram







- Intriguing conspiracy of SM particle masses  $\rightsquigarrow \mu^{cri} \approx M_P = 1.22 \times 10^{18} \text{ GeV}$
- μ<sup>cri</sup> stable w.r.t. parametric and higher-order uncertainties due to asymptotic safety
- Relationship between  $M_P$  and SM parameters?
- Electroweak scale determined by Planck scale physics?
- Implicit reduction of fundamental couplings?

| Introduction<br>00000 | Running & Matching | EW vacuum stability | Cosmological implications<br>O● | Outlook<br>000 |
|-----------------------|--------------------|---------------------|---------------------------------|----------------|
| Higgs infl            | aton               |                     |                                 |                |

- Higgs field, nonminimally coupled to gravity with strength ξ, can be responsible for inflation
- Successful scenario possible even if EW vacuum is metastable
- Effective renormalization of SM couplings at scale  $M_P/\xi$
- Symmetry restoration after inflation due to high-T effects temporarily eliminating vacuum at  $H \approx M_P$



## Outlook: pole mass $M_t$

- PDG value  $M_X(t \rightarrow X) = (173.21 \pm 0.87)$  GeV is not pole mass  $M_t$ , but just parameter in MC programs w/o RC to partonic cross sections.
- Rigorous determination of  $\overline{\text{MS}}$  mass  $m_t(\mu)$  from  $\sigma_{\text{tot}}(p\bar{p},pp \rightarrow t\bar{t} + X)$ :  $M_t = (170.4 \pm 1.2) \text{ GeV ABMP16, arXiv:1701.05838 [hep-ph]}$

| Introduction | Running & Matching | EW vacuum stability | Cosmological implications | Outlook |
|--------------|--------------------|---------------------|---------------------------|---------|
| 00000        | 000000000000       | 00000000            | 00                        | 000     |

## ILC as top and Higgs factory



Anticipated errors  $\delta M_t = 100 \text{ MeV}$ ,  $\delta M_H = 40 \text{ MeV}$  Moortgat-Pick *et al.*, EPJC75(2015)371

Fate of the universe: gauge independence and advanced precision

| Introduction<br>00000 | Running & Matching | EW vacuum stability | Cosmological implications | Outlook<br>○○● |
|-----------------------|--------------------|---------------------|---------------------------|----------------|
| BSM phys              | sics               |                     |                           |                |

- Depending on future precision measurements of  $M_H$ ,  $M_t$ ,  $\alpha_s$  and higher-loop RC calculations, SM may be stable all the way up to  $M_P$ .
- BSM physics still necessary to solve open problems, *e.g.* 
  - smallness of neutrino masses
  - strong CP problem
  - dark matter
  - baryon asymmetry of universe
  - unification with gravity
- Higgs portals?