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Motivation - static critical phenomena

phase transition liquid < vapour presence of divergences

%

solid | liquid

M Y- ' M Y

> 0

2D Ising model
for T' = T, fractal-like
behaviour

Relevant concepts: order parameter, symmetry, spatial dimension, correlation
length ¢ diverges as 777, 7 = (T — T,) /T, is a control parameter



Motivation - dynamic critical phenomena

dynamic scaling

te(r) ~ (&(7))" ~ |77

scaling hypothesis

M . . .
66 -64 -62 -6 58 56 -54 52 -5
In(e)

C(r,z,t) = ’x‘—(d—2+n)@<x’AtZ>, 2D Ising ferromagnetic material
§ &) 5 =200+006
Dunlavy&Venus 2005

. OH
Opa = Fulp] —D(EV)? + fo, a€{0,2},
—— 0pa =~
reversible t. =~ noise

dissipation
(fa) =0, (ff) = 2ksTD (iV)"(...)
fluct.-dissip.
Vasil’ev 04, Folk & Moser 06, Tduber 14



Motivation - criticality in non-equilibrium systems

Example: directed percolation process (simple model for epidemics or in high

energy physics - Gribov process)

@ inactivesite Originalseed

@ activesite

........ broken bond

Offspring production

unbrokenbond

Diffusion

Coagulation

t - time in proper units N(t) - number of active sites
Not exactly solvable even in 1+1 dimension.
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Motivation - criticality in non-equilibrium systems

detailed balance H #* Ht is violated

p< pc

pP=pc

Time
Time

Time

Space
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correlation length & ~ [p — p.| 7+

Space

Space

Active phase
P>pc

p=08
P = po = 0.6447
p=063

Absorbing phase
p<pc
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forp = pc: N(t) ~ t*, other-

wise N (t) ~ exp(+£At)

(MCS)



Velocity field - Nr. 1 (stochastic Navier-Stokes Eq.)

stochastic equation dyv + (= V)v = ~Vp+ vV°v + f

f - random force — input of energy

relevant physical parameter -
Reynolds number

_ LoVp  |inertia

4 dissipation

Re

Re <« 1 - laminar flow

fully developed homogeneous isotropic turbulence (in a statistical sense)
for Re — oo

# of dof ~ Re?/4



Velocity field - Nr. 1 (stochastic Navier-Stokes Eq.)

The equal-time structure functions
Sn(r) = ([vr(t,z) — v (t,2)]"), vo=v-r/r, r=|z—a
The Kolmogorov theory implies in the inertial range | < r < L
Sn(r) = C, (Er)"3,  C, universal
£ - the average power of the injection

in reality due to intermittency :
Su(r) = (€)™ (r/L)
Theoretician’s dream: to calculate v,, within a controllable scheme.

Falkovich 01



Velocity field - Nr. 1 (stochastic Navier-Stokes Eq.)

Note on expansion scheme for turbulence problems

@ Diagram technique of Wyld, Wyld 61
@ stochastic force with the correlator
(Filk) f3(—k)) o k=2
expansion in formally small parameter y and spatial dimension d is fixed

@ y — 2 - energy doping from infinite scales

Adzhemyan et al. 98, Vasil’ev 04



Velocity field - Nr. 2 (Synthetic models)

Transport of some quantity - observation by R. Kraichnan (Kraichnan 68)

00 + (v- V)8 = DV?4
advection diffusion

passive scalar might be intermittent for non-intermittent velocity field

Main idea: v(t, ) - random Gaussian variable (v) = 0 and
(v(t,k)v(0,0)) o O(t)k> 47V Ple—uoDoth® ™",

PZ; = 0;5 — kik;j / k2 incompressible part (V - v = 0)
@ easy generalizations - compressibility, anisotropy, helicity etc.

o different techniques: zero-mode approach, RG approach, 1/d
expansion, numerical simulations

Antonov 06, Hnatic 16



Stochastic differential equations and quantum field theory

De Dominicis-Janssen dynamic functional

dp(z) = Uz, ) + f(2), (f(x)f(a’)) = D(z,a’),
)

1
Sly] = §<p’D90' +¢' [0y + U],
< —

. . dynamics
noise properties

where the integrations over ¢, x have been omitted.

e Statistical averages as averages with a functional weight exp S[¢]
o quantum field — random classical field

@ Machinery of quantum field theory applicable: Feynman diagrammatic
expansion, the renormalization group, operator product expansion etc.

Vasil’ev 2004, Tduber 2014, Hnatic 16



Stochastic differential equations and quantum field theory

(1) proof of renormalizability

(2) Finding IR regimes
qualitative picture

B(g)
dg uv 8<| IR sta</
— functi = —f(g
B — functions dlnp B(g)

Multi-charge theories 3;(g;) = 0 and Q;;, = 00;/0gy, : |Q]
(3) Experimentally measured quantities

*
g >0

x2):ZCF(r)F(t,:c), a:::nl—;xz, r=x;—x2—0
in the inertial range 1/ < r < 1/m ~ L
ap OFE () nio

(F) x m=F — (FpFps) = (ur)Bnot8p0

Vasil’ev 04, Amit 05



Differences



Main differences - turbulence problems

Majority of calculations in the 2-loop approximation

@ Adzhemyan et al., IJMP B 2003 - “One can say that the two-loop
calculation for the stochastic NS equation is as cumbersome as the
four-loop calculation for the conventional ¢* model.”

@ The critical dimensions (velocity and its powers, frequency, energy
dissipation rate etc.) often given by the one-loop approximation exactly

@ But, ¢ series for other important quantities more complicated - the
calculation of the higher-order terms for them is of great interest, e.g. the
correction exponent, the Kolmogorov constant, the inertial-range
skewness factor

S3

S3/?
@ higher-order terms important to judge about the validity and
convergence of the perturbative expansion

Sa(r) = Cy(Er)*?, S



Main differences

@ To a given static model there are various dynamical extensions
Hohenberg & Halperin 77

@ Multi-charge theories

o Typical theory contains additional parameters. These are not charges, but
the RG constants may depend on them.
Example: model C (slow heat conduction) Vasil’ev 04

S = )\dﬂ/}%/)/ + ¢/[—at + )\¢H¢] - )\mm/82m/ + m/[—at - )\m82Hm],

5Sstat
Hy =
¢ 5¢’
g2
A = Al = Zy =14+ —2— +...

(I1+u)e



Main differences - an illustration for Feynman diagram

advection of a scalar quantity by the Navier-Stokes ensemble

/koqu A% diq 1 1
2m 27 (2m)4(2m) ¢ i(w — Qi) + D(p — k)?? i(w — Q — Q) + D(p — k — q)?

d7(q)Psa(q) d; (k) Pra(k
o jgé) L) o= ka(p— k= ) o1 (p— ) =

dk ¢’k — (g k)’
4v, (1+u (2 2d/ / o k2+q Fulk+ g ds(q)dy(k)




Main differences - structure of propagators

effect of strong anisotropy

S[®] = 0'Dpt /2+0 | -0, — (v - V) + 1,V + xoro(n - V)* ] 0—vD, v/2.

(606')0 = (0'0); = !

—iw + vok? + xovo(n - k) ’
C(k)
| — iw + vok? + xovo(n - k)2 |2

(06)0 =

More involved issues in Adzhemyan et al., PRE 00



Main differences - expansion schemes

@ Honkonen & Nalimov 96 - 2D dimensional turbulence, expansion in y and
A:d=2+2A

= L 0o e

@ new divergence present in v'v’

<fm(t7 k)fn(t,) k,)> = Pmn(k)(s(t - t/)é(k + k/)df(k;)

kernel function d¢(k) generalized to
df(k) =dp (k) + df, (k) = glOngZlidiy + 920V8k2

@ double expansion in (A, y), where A = (d — 2)/2 is deviation from
space dimension 2 and y - deviation from the Kolmogorov scaling

Hnatic et al. Acta Phys Slov 16



Main differences - expansion schemes

Ray scheme for 3D turbulence Adzhemyan et al. 05

yxA=(d—2)/2




Main differences - expansion schemes

Adzhemyan et al. 10 - improved perturbation theory for 3D NS eq., details in
Hnati€ et al., Acta Phys Slov 16

I-loop  2-loop n-loop

1

(n)
— Al

n-loop

— C S
Aly,d) =) Ar(d)y*, ¢=y/A K
k=0 experiment | 2.01 | —0.28
() _ 4m) | A(n)
Acpr = Aya T A4y ldoop | 1.47 | —0.45
n—1ln—1
33 rag Al double | 1.889 | —0.308

k=0 =0



Overview



Overview - critical dynamics

Three-loop calculation for model A

CRITICAL DYNAMICS AS A FIELD THEORY
N.V. Antonov and A.N. Vasil'ev
Critical dynamics [1-3] is considered systematically from the point of view of quantum
field theory. The connection between dynamics and statics and its consequences for the
renormalization constants is discussed in detail, The main technical result is the
calculation of the & contribution in the 4 ~ 2¢ expansxon of the dynamical exponent A
(critical dimension of frequency) for the O,-symmetric qz model. Instead of the

value A =2 +0.726(1 — 2¢+1.687)p ubtamed previously [4], the value A = 2 +
0.726(1 — 2€-0,1885)y is obtained.

@ preprint Adzhemyan, Novikov & Sladkoff arXiv:0808.1347, Vestnik of St.
Petersburg University 4 (4) (2008), 109-112. (reported 4-loop calculation)

@ Adzhemyan, Borobeeva, Ivanova, Kompaniets “Theory withour divergences
(in preparation)

@ 5-loop calculations almost finished



Overview - turbulence problems

o three-loop calculation for Kraichnan model

PHYSICAL REVIEW E, VOLUME 64, 056306

Calculation of the anomalous exponents in the rapid-change model of passive scalar advection
to order £°

L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev
Department of Theoretical Physics, St. Petersburg University, Ulje kaja 1, St. Petersburg-P Ivorez 198504, Russia
(Received 11 June 2001; published 26 October 2001)

The field theoretic renormalization group and operator product expansion are applied to the model of a
passive scalar advected by the Gaussian velocity field with zero mean and correlation function = &(r
—1')/k?**_ Inertial-range anomalous exponents, identified with the critical dimensions of various scalar and
tensor composite operators constructed of the scalar gradients, are calculated within the & expansion to order
&? (three-loop approximation), including the exponents in anisotropic sectors. The main goal of the paper is to
give the complete derivation of this third-order result, and to present and explain in detail the corresponding
calculational techniques. The character and convergence properties of the & expansion are discussed, the
improved *“‘inverse” & expansion is proposed, and the comparison with the existing nonperturbative results is
given.

e analytic results for anomalous exponents presented to &3

o It was shown that the knowledge of three terms allows one to obtain
reasonable predictions for finite € ~ 1; even the simple £ expansion
captures some subtle qualitative features of the anomalous exponents
established in numerical experiments



Overview - turbulence problems

@ [.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, PRE 02: ”Anomalous scaling
of a passive scalar advected by the turbulent velocity field with finite
correlation time: Two-loop approximation ”

@ L.Ts. Adzhemyan, N.V. Antonov, M.V. Kompaniets, A.N. Vasil’ev, [IMP B 03:
”Renormalization-group approach to the stochastic Navier—Stokes
equation: Two-loop approximation”

@ Adzhemyan, Honkonen, Kompaniets, Vasil’ev, PRE 05 ”An improved ¢
expansion for three-dimensional turbulence: two-loop renormalization
near two dimensions”

® L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, PRE 05:
” Anomalous scaling of a passive scalar advected by the Navier—Stokes
velocity field: Two-loop approximation”

@ work of M. Jurcisin and his group - variants of synthetic models with
different generalizations



Overview - 1/d expansion turbulence

Main idea -
e multiscaling disappers for d — oo
@ 1/d corrections calculable for passive advection
@ combine y-expansion and large d—limit
@ many integrals vanish
@ expectation to obtiain simple result

8 8o 43 4
=Sy S 40
U=y =gy gyt ("),

w = ay/3) )

@ Adzhemyan, Antonov, Gol’din, Kim, Kompaniets, JPA 08 "Renormalization
group in the infinite-dimensional turbulence: Third-order results”

@ Adzhemyan, Antonov, Gol’din, Kompaniets, JPA 13: ”Anomalous scaling of
a passive vector field in d dimensions: Higher-order structure functions”

4-loop calculation under construction



Overview - Magnetohydrodynamics

@ astrophysical applications Moffat 78, Shore 07

o The magnetohydrodynamic limit: the dense limit of a plasma motion of
fluid given by the hydrodynamic equations and Amperes law connects
the charge and bulk densities

wpTe K 1,

wp the plasma oscillation time scale, 7. the collision time

@ two coupled stochastic equations

OB+ (v-V)B=(B-V)v+rV>B + f,
v+ (v-V)v=1V>v—-Vp+ (B-V)B+ f,

e without feedback on velocity field — Kazantsev-Kraichnan model

o full 2-loop calculation still missing



Overview - compressible Navier-Stokes equation

The general stochastic NS eq.

convective term

p - the density, 19,140 - molecular viscosities,
v - the velocity, f - random force.

continuity equation op+ V- (pv) =0,

thermodynamic considerations pP—po = c% (p— po)-

¢g - adiabatic speed of sound

@ 1-loop d = 3 in Antonov 97
@ around d = 4 within double expansion in Antonov 16
o d = 2 still lacking



Recent results



Directed bond percolation process

Sle] = Sasle] + Smle] , ¢ ={v, ¥},

free part interactions

deviation from criticality

———
Sartle / dt / dte {w[at DoV +Dm]w} TP —De

Sulel = [t [ ats {DOAO[W MJ}

expansion parameter d = 4 — ¢

Honkonen: arXiv:1210.3934, Janssen& Tauber 2004



Directed bond percolation process

Critical exponents
a) The number N (¢, ) of active particles generated by a seed at the origin

b) The mean square radius R?(t) of percolating particles, which started from
the origin at time ¢ = 0

B Jd%z 2G5 (t ) 2/A,

2
B0 = s rate 6 e ™

¢) Survival probability P(¢) of an active cluster originating from a seed at the
origin
) —(d+ 7y +75)/2A
P(t) = — lim ((—t,0)e* Sz vO0@)) _y @+ +75)/ o

k—o0

Hinrichsen et al. 08



Directed bond percolation process

Sketch of the calculational procedure

@ Normalization point

@ Generation of topologies

@ Construction of the Feynman diagrams

@ Generation of the integrands

@ Numerical calculations
based on Adzhemyan, Kompaniets, TMP 11 and Adzhemyan, Kompaniets, Novikov,
Sazonov, TMP 13

# (loops) | # (qu) # (F1;2¢)
1 1 1
2 2 11

@ Janssen&Tiuber 05
@ -in preparation



Preliminary results

Critical exponents - the index 7,

=24 —% —0.068077 €* + 0.0741655¢° + O(*).

Dynamic critical exponent 2 reads

2 =2-p),_,. = 2 — - [EONBOBHHD" + 0.0344042¢° + O(<°).

2-loop results Janssen 81, Bronzan 74
25 161 4
n= —% [1 + < + ln) €+ 0(62)]

288 ' 144 '3
~ —% —0.068075 €2 + O(3),
67 59 4
=2 14—+ —In= 2
‘ 12[ +<288+144 3)”0(‘E )}

~2 - ﬁ 20.0292001c2 + O(?).

Comparison of analytic results with numerical ones - difference smaller than
0.01%. Agreement with Janssen 2-loop results Janssen 81, Adzhemyan et al. 16



z § = d;;’l =1

d=3 d=2 d=3 d=2 d=3 d=2

Ts 1.8874 1.7164 0.7371 0.4486 0.1208 0.3167
T3 1.9218 1.9917 0.7387 0.4989 0.0835 0.0061
P} 1.8716 1.4424 0.7364 0.4428 0.1515 1.6709
P; 1.9048 1.8091 0.7339 0.4187 0.0715 0.0651
P? 1.9032 1.7985 0.7335 0.4077 0.1029 0.2197
LTy 1.8874 1.7165 0.7371 0.4486 0.1208 0.3167
P} 1.8716 1.4425 0.7364 0.4428 0.1515 1.6705

2 Simul. || 1.901(3) 0.732(4) 0.114(4)

1.765(2) 0.451(3) 0.229(3)

1 Janssen 81, Bronzan 74 2 Henkel et al. 08



Annihilation process 24 — &

particles are diffusing with diffusion constant Dy and reacting after mutual
contact

. . . A
irreversible reaction A + A =% &

particles A can be interpreted as molecules, biological entities, mutually
annihilating random walk etc. continuum action S forA + A — @ is

S = i [~ — (v-V)+ DoV~ Do 20T +(17)?)9? — moah im0 |+ Suetocity



Annihilation process 24 — &

o Callan-Symanzik equation for the mean particle number

0
|:(2_71 +Z/898 dn0+d:| (tvuvyan07g) =0

@ non-perturbative summation over ng

o effective action
1 P 1 -
Th = S+’ % 4+ % N +d” DNt
4 \\<—’¥ 8 et ‘\\*’4/

@ stationarity equations
0l'r _ oI'g

syt oy

Hnatic et al. 2013



Annihilation process 24 — &

o density decay rate n(t) oc t~¢

o the decay exponent
*

V4
=1
«o + 2
where the anomalous dimensions 73 and 4 are defined as
_ 0lnZy _ 0InZy
"2 = 3lnu 07 V4 = 8111/11 07

Y2 =79D, Y4=7I\—7D



Annihilation process 24 — &

Fixed point! a region of stability O(y, A) 2
Gaussian (i) 1 y<0,A>0
Thermal (ii) 1+5+4 A<0,2y+3A<0
Anomalous kinetic (iii) ll_Ly% y>0,—2y/3 <A< —y/3
Normal kinetics (iv) 1 y>0,A>—y/3
Driftless (v) 1+ A unstable
A

(U] (iv)

Recall that d = 2 4+ 2A ~05.

(ii)

'for d < 2 we have n(t) oc t 1+
2 quadratic corrections are not presented



Annihilation process 24 — &

(1) Gaussian FP

e stable for d > 2 - mean field theory
o needed for the correct use of RG

(i1) Thermal FP

e local correlation stronger than long correlations and
because A < Oineq. 1 + A/2 > 1+ A holds
o at thermal point the decay is faster than n ~ t~(1+4)

(ii1)) Normal FP

o stable for A > —y/3 with mean field-like behaviour o = 1
o long range correlations destroy any effect of density fluctuations

(iv) Anomalous FP - here wehave 1 + A/2 < a = (1+A)/(1—-y/3) <1

(v) unstable FP - realized when there is no stirring and thermal fluctuations



Model E of critical dynamics

Action functional
S[®] = 2X9pT ¥ — Agugm’9*m
7 [(= 00+ 2ol0? = 70 = ZEWH)]) o + ogosts (~m + ho)]
+ /[ (=0 + 20l — 0 - gﬂ(w* 0)]) 6" = idagosts! (—m -+ ho))
m' [—(%m +ihogos (P07 — YT — Agued® (—m + hOm)] :
@ universality class of planar magnet
@ De Dominicis & Peliti 78 - a numerical error, later corrected Dohm 79

@ Observation by Dohm confirmed by numerical means Adzhemyan et al. 16

o dimensional regularization with d = 4 — 2¢



Model E of critical dynamics

2
more convenient f = &{%u . w= %

dynamical fixed point
3 4 1 4
= (2€)+§ [2 In <3> - 1} (2¢)%, w* = 1+% [29 —3241n (3)} (2¢).

2
wy = (26) — 0.230097(2¢)?,  wy, = “f) —0.108171(2¢)?

weak scaling fixed point

2 2 4
* = *=Z2(2) + — |702In | = | — 167| (2¢)2.
w =0, f 3( €)+675 [70 n(3> 67] (2¢)

2
wy = (26) — 0.126302(2¢)?,  wy, = —(35) 4 0.214675(2¢)?

o Is is unclear which of two possible regimes is realized in real space
dimension d = 3 - next order of perturbation theory is called for.

o at small € the dynamical regime is IR-stable for n = 2.



List of potential future goals

3-loop stochastic Navier-Stokes equation

4-loop Kraichnan model/ 3-loop compressible version

2-loop compressible Navier-Stokes eq.

3-loop model E / 2-loop model E/F with activated velocity fluctuations

4-loop percolation problem

4-loop 1/d expansion in turbulence problems
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Thank you for your attention!



