

Critical behavior of the Gross-Neveu-Yukawa model at three loops

Luminita Mihaila

University of Heidelberg

in collaboration with

B. Ihrig, I. Herbut, M. Scherer and N. Zerf

based on arXiv:1703.08801

Motivation for GNY model

- Dirac materials like graphene [Herbut'06] or cold atom systems: quasi-relativistic Dirac fermions coupled to a bosonic order parameter
- Solution GNY provides UV completion of the Gross-Neveu model in 2 < D < 4 [Zinn-Justin '91]
 - $1/N_f$ expansions of the two theories at $D = 2 + \epsilon$ and $D = 4 \epsilon$ coincide
- construction of interacting conformal field theories beyond D = 2 [Fei et al '16]
- $N_f = 1/4$ emergent super-symmetry [Zerf et al '16]

Physics of scales - the renormalization group

Electrons on the honeycomb lattice

• no gap + vanishing density of states \rightarrow **semimetallic** behavior

Relativistic condensed matter

- ▶ honeycomb lattice: 2 different sub-lattices → pseudo-spin σ
- quasi particles: 2-component wave functions \rightarrow spinors
- Intersection $Iinear \text{ spectrum } E = \pm v_F |\vec{k}|$

Charge carriers mimic relativistic particles described by Dirac equation

• Action at low energies corresponding to H_0

$$S = \int_0^{1/T} \mathrm{d}\tau \mathrm{d}\vec{x} \sum_{\sigma=\pm 1} \bar{\Psi}_\sigma(\vec{x},\tau) \gamma_\mu \partial_\mu \Psi \sigma(\vec{x},\tau)$$

- 8-component spinors
- Clifford algebra $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu,\nu}$

•
$$\gamma$$
 matrices: $\gamma_0 = I_2 \bigotimes \sigma_z, \gamma_1 = \sigma_z \bigotimes \sigma_y, \gamma_2 = I_2 \bigotimes \sigma_x, \gamma_3 = \sigma_x \bigotimes \sigma_y, \gamma_5 = \sigma_y \bigotimes \sigma_y$

• arbitrary number of fermion flavours N

Critical behavior of Ising model

- 2nd order phase transition
- scalar order parameter ϕ
- critical exponents: scaling dimensions of local operators: ϕ^2 , ϕ^4

3D Ising universality class:

$$\mathcal{L} = \frac{1}{2}\phi(m^2 - \partial_{\mu}^2)\phi + \lambda\phi^4$$

Correlation length: $\xi \sim A|t|^{-\nu}(1+C|t|^{\omega}+\cdots), \quad t=\frac{T-T_c}{T_c}$

year	Method	u	η	ω
1998	ϵ -exp	0.63050(250)	0.03650(500)	0.814(18)
1998	$3D \exp$	0.63040(130)	0.03350(250)	0.799(11)
2002	HT	0.63012(16)	0.03639(15)	0.825(50)
2003	MC	0.63020(12)	0.03680(20)	0.821(5)
2010	MC	0.63002(10)	0.03627(10)	0.832(6)
2014	cBS	0.62999(5)	0.03631(3)	0.8303(18)

5-loop calculation in 4- ε dimensions (perturbative RG)

Massless Dirac fermions

Dirac systems in (2+1)D give rise to new universality class

- *e.g.* anti-ferromagnetic transition
 Heisenberg order parameter ~ O(3)
 massless/gapless fermion fluctuations
- correlation length critical exponent

Model	N	Class	Method	ν
Honeycomb	8	Chiral Heisenberg	Monte Carlo (present)	1.02(1)
Gross-Neveu	8	Chiral Heisenberg	$4 - \epsilon$, first order [31,50]	0.851
Gross-Neveu	8	Chiral Heisenberg	$4 - \epsilon$, second order [31,50]	1.01 1.08
Gross-Neveu	8	Chiral Heisenberg	FRG [32]	1.31

[Otsuko, Yunoki, Sorella '16]

Massless Dirac fermions (2)

e.g. charge density wave (CDW) transition with Ising OP

 $\mathcal{L} = \bar{\Psi}(\partial \!\!\!/ + g\phi)\Psi + \frac{1}{2}\phi(m^2 - \partial_\mu^2)\phi + \lambda\phi^4$

calculation in $D = 4 - \epsilon$ for arbitrary fermion number N to 3 loops

$$\Psi_0 = \sqrt{Z_\Psi} \Psi, \quad \phi_0 = \sqrt{Z_\phi} \phi, \quad m_0 = m Z_{\phi^2} / Z_\phi$$
$$\lambda_0 = \mu^{\epsilon} \lambda Z_{\phi^4} / Z_{\phi}^2, \quad y_0 = \mu^{\epsilon} y Z_{\phi \bar{\Psi} \Psi} / (Z_{\Psi}^2 Z_{\phi}), \quad y = g^2.$$

Massless Dirac fermions (2)

e.g. charge density wave (CDW) transition with Ising OP

- $\mathcal{L} = \bar{\Psi}(\partial \!\!\!/ + g\phi)\Psi + \frac{1}{2}\phi(m^2 \partial_\mu^2)\phi + \lambda\phi^4$
- massive fermions: $m_{\Psi} \neq 0 \Rightarrow \lambda_3 \phi^3$
- UV completion for GN model

$$\mathcal{L} = \bar{\Psi} \partial \!\!\!/ \Psi + \frac{g_{GN}}{2} (\bar{\Psi} \Psi)^2$$

Calculation

• $\mathcal{O}(1500)$ Feynman diagrams

- $I \overline{\rm MS} \ {\rm scheme}$
- 2 independent setups
 - IRR: 1 non zero external momentum & all masses set to zero \Rightarrow MINCER [Larin, Tkachov, Vermaseren'91]
 - IR regulator for propagators \Rightarrow MATAD [Steinhauser'00]

Heisenberg-Programm Deutsche Forschungsgemeinschaft

Results

$$\beta_x = \frac{dx}{d\ln\mu}, \quad x = y, \lambda$$

Results

$$\begin{split} \beta_x &= \frac{dx}{d\ln\mu}, \quad x = y \,, \lambda \\ \beta_y &= -\epsilon y + (3+2N)y^2 + 24y\lambda(\lambda-y) - \left(\frac{9}{8} + 6N\right)y^3 \\ &+ \frac{y}{64} \Big(1152(7+5N)y^2\lambda + 192(91-30N)y\lambda^2 \\ &+ (912\zeta_3 - 697 + 2N(67+112N+432\zeta_3))y^3 - 13824\lambda^3\Big) \,, \\ \beta_\lambda &= -\epsilon\lambda + 36\lambda^2 + 4Ny\lambda - Ny^2 + 4Ny^3 + 7Ny^2\lambda \\ &- 72Ny\lambda^2 - 816\lambda^3 + \frac{1}{32} \Big(6912(145+96\zeta_3)\lambda^4 \\ &+ 49536Ny\lambda^3 - 48N(72N-361-648\zeta_3)y^2\lambda^2 \\ &+ 2N(1736N-4395-1872\zeta_3)y^3\lambda \\ &+ N(5-628N-384\zeta_3)y^4\Big) \,. \end{split}$$

Results

$$\beta_x = \frac{dx}{d\ln\mu}, \quad x = y, \lambda$$

- Fixed points: $\beta_y(y_*, \lambda_*) = 0$, $\beta_\lambda(y_*, \lambda_*) = 0$,
 - unstable Gaußian fixed point $(y_*, \lambda_*)_0 = (0, 0)$
 - unstable Wilson-Fischer fixed point $(y_*, \lambda_*)_{WF} = (0, \epsilon/36)$

non-Gaußian fixed points (NGFP)

$$(y_*, \lambda_*)_{\pm} = \left(\frac{1}{3+2N}\epsilon, \frac{3-2N\pm s}{72(3+2N)}\epsilon\right),$$

 $s = \sqrt{9+4N(33+N)}.$

Results

$$\gamma_x = \frac{d \ln Z_x}{d \ln \mu} \quad \text{for} \quad x \in \{\Psi, \phi, \phi^2\}$$

• NGFP:

$$\eta_{\psi} = \gamma_{\psi}(y_*, \lambda_*),$$

$$\eta_{\phi} = \gamma_{\phi}(y_*, \lambda_*),$$

$$\eta_{\phi^2} = \gamma_{\phi^2}(y_*, \lambda_*),$$

$$\nu^{-1} = 2 - \eta_{\phi} + \eta_{\phi^2}$$

$$\begin{split} \gamma_x &= \frac{d \ln Z_x}{d \ln \mu} \quad \text{for} \quad x \in \left\{\Psi, \phi, \phi^2\right\} \\ \frac{1}{\nu} &= 2 - \frac{(3+10N+s)\epsilon}{6(3+2N)} \\ &- \frac{513 - 7587N - 666N^2 - 5264N^3 - 96N^4 + s(171+510N+436N^2+48N^3)}{108(3+2N)^3s} \epsilon^2 \\ &+ \frac{\epsilon^3}{3888(3+2N)^5s^3} \Big(-227691(3+s) + 4N(81(2170s-128871) + N(27(-2238507+554816s)) \\ &+ 2N(585(2414s-16143) + N(4N(5233698+N(1383001+16N(3832+54N-27s)-24986s) - 371936) \\ &- 3(8117973+761116s)))) + 288(3+2N)s^2(2N(81+N(1917+4N(450+N(153+4N)))) \\ &- N(3+4N)(99+4N(21+N))s+81(3+s))\zeta_3\Big). \end{split}$$

$$\eta_{\psi} &= \frac{\epsilon}{2(3+2N)} + \frac{180+33s+N(3-328N+2s)}{216(3+2N)^3} \epsilon^2 \\ &+ \left(\frac{102519+237519N+342N^2-122020N^3-11040N^4}{7776(3+2N)^5} \\ &- \frac{68607+2099304N+1629828N^2+1505352N^3+89536N^4+1248N^5}{7776(3+2N)^5s} - \frac{6(1+N)\zeta_3}{(3+2N)^4} \Big)\epsilon^3 \,, \end{split}$$

$$\gamma_x = \frac{d \ln Z_x}{d \ln \mu} \quad \text{for} \quad x \in \{\Psi, \phi, \phi^2\}$$

N = 2:	ν^{-1}	~	$2 - 0.952\epsilon + 0.00723\epsilon^2 - 0.0949\epsilon^3$
	η_ψ	\approx	$0.0714\epsilon - 0.00671\epsilon^2 - 0.0243\epsilon^3$
	η_{ϕ}	\approx	$0.571\epsilon + 0.124\epsilon^2 - 0.0278\epsilon^3$
N = 1:	ν^{-1}	~	$2 - 0.835\epsilon - 0.00571\epsilon^2 - 0.0603\epsilon^3$
	η_ψ	\approx	$0.1\epsilon + 0.0102\epsilon^2 - 0.033\epsilon^3$
	η_{ϕ}	\approx	$0.4\epsilon + 0.102\epsilon^2 - 0.0632\epsilon^3$
N = 1/4:	$ u^{-1}$	\approx	$2 - 0.571\epsilon - 0.0204\epsilon^2 + 0.024\epsilon^3$
	η_{ψ}	\approx	$0.143\epsilon + 0.0408\epsilon^2 - 0.048\epsilon^3$
	η_{ϕ}	\approx	$0.143\epsilon + 0.0408\epsilon^2 - 0.048\epsilon^3$
N = 0 :	$ u^{-1}$	~	$2 - 0.333\epsilon - 0.117\epsilon^2 + 0.125\epsilon^3$
	η_ψ	\approx	$0.167\epsilon + 0.0478\epsilon^2 - 0.0469\epsilon^3$
	n_{\pm}	\approx	$0.0185\epsilon^2 + 0.0187\epsilon^3$

• Padé approximants for $D = 4 - \epsilon$ results

N = 2	1/ u	η_{ϕ}	η_ψ
this work (Padé $[2/1]$)	1.048	0.672	0.0740
$(2+\epsilon)$, $(\epsilon^4$, Padé)	0.931	0.745	0.082
functional RG	0.994(2)	0.7765	0.0276
Monte Carlo	1.20(1)	0.62(1)	0.38(1)
N = 1	1/ u	η_{ϕ}	η_ψ
this work (Padé $[2/1]$)	1.166	0.463	0.102
functional RG	1.075(4)	0.5506	0.0645
Monte Carlo	1.30	0.45(3)	
N = 1/4	1/ u	η_{ϕ}	η_ψ
this work (Padé $[2/1]$)	1.419	0.162	0.162
functional RG	1.408	0.180	0.180
conformal bootstrap		0.164	0.164

• Padé approximants or polynomial interpolation for $D = 4 - \epsilon$ and $2 + \epsilon$ [Gracey et al '16] results

Outlook

- Higher order contribution for the ϵ expansion: 4-loop calculation
- Other order parameters: chiral Heisenberg model, XY model