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I—Introdur:tion. The method of differential equations

Gehrmann & Remiddi: a method to evaluate master integrals.
It is assumed that the problem of reduction to master integrals
is solved.

Henn: use canonical bases.

A lot of applications [J.M. Henn, A.V. Smirnov, V.A. Smirnov,
K. Melnikov, F. Caola, R. Bonciani, V. Del Duca, H. Frellesvig,
F. Moriello, M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella,
J. Schlenk, U. Schubert, L. Tancredi, T. Gehrmann, A. von
Manteuffel, E. Weihs, F. Dulat, B. Mistlberger, R. N. Lee,...]
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Evaluating a family of Feynman integrals associated with a
given graph with general integer powers of the propagators

(indices) —

apply IBP relations as
difference equations for Feynman integrals as functions of
indices.

Any integral of the given family is expressed as a linear
combination of some basic (master) integrals.

The whole problem of evaluation—

m constructing a reduction procedure

m evaluating master integrals
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I—Introdut:tion. The method of differential equations

Public codes to solve IBP relations
m AIR
m FIRE
m REDUZE
m LiteRed

m Kira

Private codes to solve IBP relations

m Gehrmann & Remiddi, Laporta, Czakon, Schréder, Pak,
Sturm, Marquard & Seidel, Velizhanin, Mistlberger,. ..,
von Manteuffel
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I—Introdur:tion. The method of differential equations

How to derive DE?

m Take some derivatives of given master integrals in masses
or/and kinematic invariants

m Express them in terms of Feynman integrals of the given
family
(One can use LiteRed by Lee.)

m Apply an IBP reduction to express these integrals in terms
of master integrals to obtain a system of differential
equations

After this: solve DE.
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Let f = (f1,..., fy) be primary master integrals (MI) for a
given family of dimensionally regularized (with D = 4 — 2¢)
Feynman integrals.

Let x = (xi, ..., X,) be kinematical variables and/or masses,
or some new variables introduced to ‘get rid of square roots’.

DE:
0if (e, x) = Ai(e, x)f (€, x),

where 0; = %, and each A; is an N x N matrix.
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I—Introdur:tion. The method of differential equations

Henn (2013): turn to a new basis where DE take the form
0if (e,x) = e Ai(x)f (€, x) .
In the differential form,
df(e,x) = e(d A(x)) f(x,e).
where
A= Z’Z\k log(aw) -
k

and A, are constant matrices. The arguments of the
logarithms «; (letters) are functions of x.

Let us call it epsilon form and the corresponding basis
canonical.
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The case of two scales, i.e. with one variable in the DE, i.e.
n=1.

One tries to achieve the following form of DE:

Flle,x)=eA(x)f(x.e) =€)

K fe, x).

x — x(k)

where x() is the set of singular points of the DE and N x N
matrices a, are independent of x and e.

For example, if xx = 0, —1, 1 the matrix A involves

log(x), log(x + 1)

and results for elements of such a basis are expressed in terms
of harmonic polylogarithms (HPL) by E. Remiddi and

J. Vermaseren.
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I—Introdut:tion. The method of differential equations

Solve DE order in order in ¢

f=> f0

— ) = (i-1)
dxf A(x)f

Solution

FO)(x) = / A ) (x)dx’ + ¢
0
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/ QAT
0<m <. <x

— a linear combination of integrals

dA(Tl)

dT1

/ CITk
0<n <. <x Tk + ak

where a; =0, —1 or 1.
HPLs

H(ai, as, ..., an x) / f(ar;t

1+ a1

where f(£1;t) =1/(1Ft), f(0;t) =1/¢t,

., ap; t)dt,
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I—Introdur:tion. The method of differential equations

How to turn to a canonical basis?

Computer codes:

m An algorithm in the case of one variable
Three steps: making singularities Fuchsian, normallzmg
eigenvalues and factoring out the e-dependence. A crucial
ingredient for the first two steps: the balance
transformation.
Public implementations:
Fuchsia
epsilon
m An algorithm in the case of several variables
with a public implementation.
Adjust a transformation matrix using a proper Ansatz.
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I—Evaluating four-loop QCD form factors

Evaluating QCD form factors.
Three-loop results

Analytic results for the three missing coefficients

Analytic results for the three-loop master integrals up to
weight 8

motivated by a future four-loop calculation.
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I—Evaluating four-loop QCD form factors

The photon-quark form factor in the large-N, limit.
Non-planar contributions?
Fermionic corrections with three closed quark loops, i.e. n?

non-planar calculations in A/ = 4 SYM with numerical
methods
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I—Evaluating four-loop QCD form factors

Photon quark and Higgs quark form factors

1
STr (42 T8 dh )

Fola) = 41-e)q

Fol?) = —2—;%(;42 Codh)

q = q1 + g2; q1 and g, are the incoming quark and antiquark
momenta and g is the momentum of the photon.

n2-contributions




Evaluating multiloop Feynman integrals by differential equations

I—Evaluating four-loop QCD form factors

log(Fx) =

1 1 1
= { 2 { "2 CF”i’u-v} e {73
. L 1] %
%) { [ BDCFch,p - 5,307,( - *CF%...,,} + < {%} }
1 1 5 1
Z—) { = [ 50 C:-'y:...,,} [ ch.,.p Eﬂov:.,.p) + gﬂé'yf}

5]

1 13 > 1 5 [ 130
e (=22 _ 2 _ =
+ pr [ F < % IBO’YC..,,, 12 31,80%..,,, 4/80’Yx

}

1
ta

+

(
+

1 1 o 1.

T 3| 38 3P — CF’Ycu.p
as\4 | 1 |25 4 °
R Bl e 4o

+ <47r) { €5 [96 Po CFcus

+Lle 5ﬂ°+3ﬂ‘+762 +162‘+1ﬂ6°
) F 32 2Ycusp 32 1Y cusp 2% 0 cusp 2 0 Vx S Pt 0Yx

1 1 o 1 1 1 2 1 3 1 vi
+E_2|:_ZB2'YX_Zﬂle_Zﬂ07x_3_2CF'Ycu-p +; vy +.o,

where x € {q, b} and j? = —¢?



Evaluating multiloop Feynman integrals by differential equations

I—Evaluating four-loop QCD form factors

The cusp and collinear anomalous dimensions
= Z Oés(luz) ! n
iy 47 s

with x € {cusp, g, b}.



Evaluating multiloop Feynman integrals by differential equations

I—Evaluating four-loop QCD form factors

The cusp and collinear anomalous dimensions
= Z Cks(luz) ! n
iy 47 s

with x € {cusp, g, b}.
The relation 74 = 5 and the universality of the universality of
Yeusp Provide important checks of the calculation.



Evaluating multiloop Feynman integrals by differential equations
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The cusp and collinear anomalous dimensions
= Z Oés(luz) ! n
iy 47 s

with x € {cusp, g, b}.
The relation 74 = 5 and the universality of the universality of

Yeusp Provide important checks of the calculation.
The coefficients of the (3 function are
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Our results
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I—Evaluating four-loop QCD form factors

. 3,n0 3,nt 3,nt .
The coefficients Yeush, Yeusp. qu " and g ' are only known in

the large-N, limit
[J. Henn, R. Lee, A. Smirnov, V.S. & M. Steinhauser'16]

Agreement with the known n} terms of 72,
[J.A. Gracey'94; M. Beneke & V.M. Braun'95]

Agreement with the known n7 term of 73,
[J. Davies, A. Vogt, B. Ruijl, T. Ueda & J.A.M.
Vermaseren'17]
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I—Evaluating four-loop QCD form factors

We apply
m qgraf for the generation of Feynman amplitudes;

m g2e and exp for writing down form factors in terms of
Feynman integrals

m FIRE and LiteRed for the IBP reduction to master
integrals.

Calculations in generic &-gauge for checks.
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I—Evaluating four-loop QCD form factors

m We introduce a second mass scale by considering g5 # 0,
and define g3 = xq?.

m We encounter 91 (101) two-scale master integrals for
family 7 (786).

m We derive differential equations for these master integrals
with respect to x using LiteRed.

m To solve our differential equations we turn from the

primary basis to a canonical basis using the private
implementation of the algorithm of Roman Lee.

Oxf(x,€) =€ F + b

x 1—x

| fix.a

m We write down solutions of these differential equations in
a straightforward way order-by-order in € in terms of HPL
with letters 0 and 1.
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m We fix the boundary conditions for the canonical master
integrals at the point x = 1 where integrals are analytic
and reduce to well-known propagator integrals

m We solve our differential equations asymptotically near
the point x = 0 and fix these solutions by matching them
to our solution at general x using HPL
The asymptotic solutions are linear combinations of
powers x*¢ with k = 0,1,...,8. We pick up asymptotic
terms with kK = 0 and obtain the so-called naive values of
the canonical master integrals at x = 0.
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I—Evaluating four-loop QCD form factors

m We fix the boundary conditions for the canonical master
integrals at the point x = 1 where integrals are analytic
and reduce to well-known propagator integrals

m We solve our differential equations asymptotically near
the point x = 0 and fix these solutions by matching them
to our solution at general x using HPL
The asymptotic solutions are linear combinations of
powers x*¢ with k = 0,1,...,8. We pick up asymptotic
terms with kK = 0 and obtain the so-called naive values of
the canonical master integrals at x = 0.

m From the analytic results for the naive part we obtain
analytical results for the sought-after one-scale master
integrals after changing back to the primary basis.
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I—Evaluating four-loop QCD form factors

Examples of our results for the master integrals

786
G1(11011011110 =
1| 7n%¢ 572G 441¢ 87sss 23 2.2 473¢s¢s 806978
z _ _ _ _ 2222 _ ,
€| 360 3 16 2 6 3 2 777600
(786) _
Gi11011011120 =
1 w2 N 1|7¢ +1 46374 +1 1247¢s 12772 (3
Iad 96 et | 16 e3 | 8640 €2 48 144
13876178  1079¢2 | 7892374¢3  1830172(s  161(r
e | 362880 12 12960 720 24

3201sg, " 55183 2.2 330689¢5¢3 12237418778
€ s — — .
5 216 3 90 653184000
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I—Evaluating conformal integrals

Correlation functions in N' =4 SYM (in particular of the
stress-tensor multiplet).

Correlation functions — both scattering amplitudes and the
dual polygonal Wilson loops

The complexity increases very much at higher loops.
An explicit result for the two-loop four-point stress-tensor
correlator



Three-loop calculations [B. Eden, P. Heslop, G. P. Korchemsky
& E. Sokatchev’12, J. Drummond, C. Duhr, B. Eden,

P. Heslop, J. Pennington & V. A. Smirnov'13, D. Chicherin,

J. Drummond, P. Heslop & E. Sokatchev'15]
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Three-loop calculations [B. Eden, P. Heslop, G. P. Korchemsky
& E. Sokatchev’12, J. Drummond, C. Duhr, B. Eden,

P. Heslop, J. Pennington & V. A. Smirnov'13, D. Chicherin,

J. Drummond, P. Heslop & E. Sokatchev'15]

In [J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington
& V. A Smirnov'13] also one four-loop integral was evaluated
(with one external vertex is connected to the rest of this
diagram only by a single line.)
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Three-loop calculations

In

also one four-loop integral was evaluated
(with one external vertex is connected to the rest of this
diagram only by a single line.)

Four loops: 26 genuine four-loop integrals in the planar part of
the correlator five of which can be related to the ladder with
four rungs by flip identities on subintegrals.
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Evaluating by DE using D-dimensional IBP relations
[B. Eden & V.S."16].

DA
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I—Evaluating conformal integrals

Evaluating by DE using D-dimensional IBP relations

The goals:
m To evaluate this four-dimensional four-loop integral.

m To evaluate the whole set of the master integrals in D
dimensions. (The first example of such a calculation.)
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I—Evaluating conformal integrals

/ / [—x§]2 [-x¢ ?azxs Xmxiisgq]i[Xs(Xl — x7)?]%

[— (2 = x5)°] 72 [=(xa — x6)°]22[— (2 — x7)°] 23 [ (%6 — x7)?] "%

/\

[0 — )21 [=(2 — 2T [~ (3 — 6 P17 s — xr I
[0 =G = 56)2] 29[ (x5 — x6)°] 7[>

(06 — e[ (xr — x0)70

v/\

X

~—
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(/ /[@P[%%&&?Lﬂ;ﬁh—ﬁm“

[— (2 = x5)°] 72 [=(xa — x6)°]22[— (2 — x7)°] 23 [ (%6 — x7)?] "%

/\

[0 — )21 [=(2 — 2T [~ (3 — 6 P17 s — xr I
[0 =G = 56)2] 29[ (x5 — x6)°] 7[>

(06 — e[ (xr — x0)70

v/\

X

~—

ai <O0fori>11
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/ / [—xg] [ Xe(]jazxs ?Xlxiisgq]i[xs(xl—X7)2]a“

[— (2 = x5)°] 72 [=(xa — x6)°]22[— (2 — x7)°] 23 [ (%6 — x7)?] "%

/\

[0 — )21 [=(2 — 2T [~ (3 — 6 P17 s — xr I
[0 =G = 56)2] 29[ (x5 — x6)°] 7[>

(06 — e[ (xr — x0)70

v/\

X

~—

ai <O0fori>11

Three coordinate differences squared off the light cone

X12 = —zZ, X2 - (1 - Z)(l - 2)7 (Xl - X2)2 = -1
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I—Evaluating conformal integrals

/ /[ xg) [~ Xez?azxs ?X1Xi(i<5;7]g’[xs(x1—X7)2]a“

[— (2 = x5)°] 72 [=(xa — x6)°]22[— (2 — x7)°] 23 [ (%6 — x7)?] "%

/\

[0 — )21 [=(2 — 2T [~ (3 — 6 P17 s — xr I
[0 =G = 56)2] 29[ (x5 — x6)°] 7[>

(06 — e[ (xr — x0)70

v/\

X

~—

ai <O0fori>11

Three coordinate differences squared off the light cone
X12 = —zZ, X2 - (1 - Z)(l - 2)7 (Xl - X2)2 = -1

Our integral is F1 1111111110,

sty ty byt tydydydy



FIRE — 213 master integrals

«0O0)>» «F»r «=>»

<

DA



FIRE — 213 master integrals

Two variables: zz =z and z, = Z
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FIRE — 213 master integrals

Two variables: zz =z and z, = Z

DE

0

8—217[ = A1(217227€)f7
if = Az, z,¢)f
822 - 2\41, 42, .

Constructing a canonical basis
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I—Evaluating conformal integrals

FIRE — 213 master integrals

Two variables: zz =z and z, = Z

DE
0
8—217[ — A1(217227€)f7
if = Az, z,¢)f
822 - 2\41, 42, .

Constructing a canonical basis
We used a code constructed by Burkhard Eden.
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FIRE — 213 master integrals

Two variables: zz =z and z, = Z

DE
0
8—217[ — A1(217227€)f7
if = Az, z,¢)f
822 - 2\41, 42, .

Constructing a canonical basis

We used a code constructed by Burkhard Eden.

212 of 213 elements of a canonical basis were obtained with
this code.



DE in our canonical basis

0 -

a—z:lf = €A1(Z]_,Zz)f,
U PP
822 EARN\Z1, 22 .

DA
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I—Evaluating conformal integrals

DE in our canonical basis

o _
0—21 = €A1(21,22)f,
Db = cho(a, 2)f
(922 = EANZ1,22 .
A= 24
with

A = ZA;{ |Og(Oék) .

and letters taken from the alphabet
{212,212, —a+n,1l-a—2n,1-2an,z1+2n—-22}



Solve DE order in order in ¢

8
f= Z Fgi

i=0

«0O0)>» «F»r «=>»

<

v
it

DA
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Solve DE order in order in ¢
8
f=> f0
i=0

—f0) = Az, )"V,

—f(l) = A2(Zl, Zz)f(i_l) .
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I—Evaluating conformal integrals

Solve DE order in order in ¢

8
f=> f0

i=0

0 - .
a—zlf(') = Az, )V,
9 iy y (i-1)
a—zzf = A2(Zl, 22))[ .
First, solve
0 _
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Solve DE order in order in ¢

8
f=> f0

i=0

aiZlf(i) = Az, 2)f07D
if(") = Az, )0V
0z ’

First, solve
if(") = A (z1, 2)f0V
0z ’

Solution

f)(z,2) = / dzA1(z, 2)f (4, ) + H(2)
0
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The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.
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I—Evaluating conformal integrals

The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.

G(ay,...,anz) = / dt G(az,...,ant)
0 t_a]_
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I—Evaluating conformal integrals

The result is a linear combination of multiple (Goncharov)
polylogarithms (MPL) G(a1, a2, ..., aw; z1)
where a; € {O, 1, Z, 1-— 2z, 1/22, —22/(1 — Zz)}.

G(al,...,an;z):/ dt G(az,...,ant)
0

t—a

Substitute solution into the second equation to obtain

o _ .
0—22,7( ( ) A2(Zl,22)h(l_1)(22)

+A2 (z1, 2 / dZ1A1 (71, Zz)f( 2)(2_1722)

a22/ leAl 21 Zz)f (21,22)



The dependence on z should drop out! (A useful check.)

«0O)>» «F)»r « =
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A resulting equation for h()(z,) can then be solved in terms of
HPL with letters 0 and 1, up to constants.
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A resulting equation for h()(z,) can then be solved in terms of
HPL with letters 0 and 1, up to constants.

To fix these 213 x 9 unknown constants, we match our results
in terms of multiple polylogarithms to the leading order
asymptotic behaviour of the solution of DE in the limit

z,z — 0 which corresponds to the Euclidean limit x; — 0.
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The dependence on z should drop out! (A useful check.)

A resulting equation for h()(z,) can then be solved in terms of
HPL with letters 0 and 1, up to constants.

To fix these 213 x 9 unknown constants, we match our results
in terms of multiple polylogarithms to the leading order
asymptotic behaviour of the solution of DE in the limit

z,z — 0 which corresponds to the Euclidean limit x; — 0.

If y is the expansion parameter in the limit z, z, — 0 then we

encounter the following power dependence

Yoy y Ty ey
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An interplay between expansion by regions

and solving canonical DE in the given limit.

The short-distance limit is simple because the corresponding
integrals are four-loop propagator integrals

One could consider also the short-distance limit x, — 0 and
the limits z; — 0,2z — 1 and z; — 1,z — 0 which are
light-cone limits 7 — 0 and x§ — 0.
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I—Evaluating conformal integrals

An interplay between expansion by regions

and solving canonical DE in the given limit.

The short-distance limit is simple because the corresponding
integrals are four-loop propagator integrals

One could consider also the short-distance limit x, — 0 and
the limits z; — 0,2z — 1 and z; — 1,z — 0 which are
light-cone limits 7 — 0 and x§ — 0.

It turns out that the information about the the Euclidean limit
x; — 0 is sufficient.
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The result for our integral is (z — z)™2 times a linear
combination of single valued multiple polylogarithms

E{al,...,ag} = (_1)231'(;(317 <. - dg; Z) + Z Cij G(Qi; Z) G(Qj; Z)

where a; U a; has length 8 and a; is never the empty word.
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I—Evaluating conformal integrals

The result for our integral is (z — z)™2 times a linear
combination of single valued multiple polylogarithms

E{al,...,ag} = (_1)231'(;(317 <. - dg; Z) + Z Cij G(Qi; Z) G(Qj; Z)

where a; U a; has length 8 and a; is never the empty word.

The coefficients c;; are polynomials of multiple zeta values
such that all branch cuts cancel. The entries in the weight
vectors are in the set {0,1} and the “condensed notation"
...0,0,0,1...=...4... etc. is used
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After flipping points x; <> x3 (i.e. z —1/z,z — 1/2)
followed by x; <+ xo (which implies z -1 -2,z - 1—2Z2):
this function takes the form

— Lpsy+ L3 +Lpsoy — Lazoy — L0 + L3300
— L3000 + £{1,3,00,0,0}
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this function takes the form

— Lpsy+ L3 +Lpsoy — Lazoy — L0 + L3300
— L3000 + £{1,3,00,0,0}

This result as well as those for some other elements in the
basis were checked by a numerical calculation with FIESTA
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After flipping points x; <> x3 (i.e. z —1/z,z — 1/2)
followed by x; <+ xo (which implies z -1 -2,z - 1—2Z2):
this function takes the form

— Lpsy+ L3 +Lpsoy — Lazoy — L0 + L3300
— L3000 + £{1,3,00,0,0}

This result as well as those for some other elements in the
basis were checked by a numerical calculation with FIESTA

Agreement with independent calculations by O. Schnetz and
E. Panzer.
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The sputnik diagram
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The evaluation of a 3-loop coordinate-space integral
contributing to the conformal 4-point correlation function in
the so-called bi-scalar CFT, an integrable theory in 4
dimensions obtained in a special limit of twisted N = 4 SYM.
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The OPE for this correlation function shows a rich structure
and provides a non-trivial set of structure constants.
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The evaluation of a 3-loop coordinate-space integral
contributing to the conformal 4-point correlation function in
the so-called bi-scalar CFT, an integrable theory in 4
dimensions obtained in a special limit of twisted N = 4 SYM.

The OPE for this correlation function shows a rich structure
and provides a non-trivial set of structure constants.
The integral is
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I—Evaluating conformal integrals

The evaluation of a 3-loop coordinate-space integral
contributing to the conformal 4-point correlation function in
the so-called bi-scalar CFT, an integrable theory in 4
dimensions obtained in a special limit of twisted N = 4 SYM.

The OPE for this correlation function shows a rich structure
and provides a non-trivial set of structure constants.
The integral is

/ / d%y1d%y,d%y;
) (= )2 — y2)2(x3 — y3)2( — y2)2 (v — y3)2 (2 — y3)?

Its pole part is 2¢(3)/¢.
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The integral is F1 11111

stytytydyds

0,0,0,0,0,0+ where

- d®y1d%y,d°y;
Faroooe = // [ (1 = y1)22[=(x2 — y2)?]2 [ y3]% [ (11 — y2)?]*
1

“T0n —ys21% =01 — y3) 2% = (1 — 12217 = — y3) 2]
1
[~ — y2)21% [~ (2 — ya)2Jo0 [~y 2] [y 2]

X

with X = —zz, x3=—-(1-2)(1-2), (x—x)*=-1
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The integral is F1 11111

stytytydyds

0,0,0,0,0,0+ where

_ d®y1d%y,d°y;
Fovoma = / / [~ = y1)2)2 [~ (x2 = y2)2]22[—y35]% [~ (11 — y2)?]*
1
B Y o ) X (7l ) P B e
1
“T0e — )1 [~ (% — ys )27 [—y2]on [ y2]e
with xf = —zz, 3 =—(1-2)(1-2), (xq—x)*=-1

The same procedure as in the previous four-loop calculation.
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There are 16 MI.

Constructing a canonical basis with the Eden’s code
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There are 16 MI.
Constructing a canonical basis with the Eden’s code
DE in our canonical basis
o _
—f = ¢cA f
o1 eAi(z, 2)f,
0

0—221( = 812\2(21, Z2)f .
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There are 16 MI.
Constructing a canonical basis with the Eden’s code
DE in our canonical basis

aiZlf = 5/2\1(21,22))[,
if = 812\2(21 Z2)f
022 ’ ’
A=A
with

A = ZAk |Og(04k) .

and letters taken from the alphabet
{1 — 21, 1- 22,21 — 22}
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I—Evaluating conformal integrals

The result for the finite part of our integral is

(1/(30 (z1 - 22)))(\[Pil~4 z1 - \[Pil~4 z2 -
30 z2 G[0, 1, z2] G[1, 0, z1] + 30 z1 z2 G[0, 1, z2] G[1, 0, z1] +
30 zt G[0, 1, z1] G[1, 0, z2] - 30 z1 z2 G[0, 1, z1] G[1, 0, z2] +
30 G[1, 0, z2] G[1, 1, z1] - 30 zt G[t, 0, z2] G[1, 1, =z1] -
30 z2 G[1, 0, z2] G[1, 1, z1] + 30 z1 z2 G[1, 0, z2] G[1, 1, z1] +
30 z2 G[0, 0, z2] (zt G[0O, 1, z1] - (-1 + z1) G[1, 1, z1]) -
30 G[1, 0, z1] G[1, 1, z2] + 30 z1 G[1, 0, z1] G[1, 1, z2] +
30 z2 G[1, 0, z1] G[1, 1, z2] - 30 z1 z2 G[1, 0, z1] G[1, 1, z2] -
30 z1 G[0, 0, z1] (22 G[0, 1, z2] - (-1 + z2) G[1, 1, z2]) -
30 z1 z2 G0, z2] G0, 0, 1, z1] - 30 zt G[1, z2] G[o, 0, 1, z1] + 30 z1 z2 G[1, z2] G[o, O, 1, z1] +
30 zt z2 G[o0, z1] G[o, 1, z2] + 30 z2 G[1, z1] G[o, 1, z2] - 30 z1 z2 G[1, z1] G[0, 0, 1, z2] +
30 zt z2 G[0, z2] GO, 0, zt] + 30 z1 G[1, z2] G[0, 1, 0, z1] - 30 z1 z2 G[t, z2] G[0, 1, 0, =z1] -
30 zt z2 G[0, z1] G[0, 1, 0, z2] - 30 z2 G[1, z1] G[o, 0, z21 +
30 zt z2 G[1, z1] G[o, 0, z2] - 30 z2 G[0, z2] GI[1, 1
30 zt z2 G[0, z2] GI[1, 1
30 zt G[1, z2] G[1, 0,
30 zt z2 G[1, z2] G[1, 0, 1, z1] + 30 z1 G[0, z1] G[1,

0
1
1
1 , z1] +
0
1
0
30 z1 z2 G0, z1] G[1, 0, 1, z2] + 30 G[1, =11 G[1, O,
1
0
1
0
1
1
0
1

0
1
1
0

, z1] - 30 G[1, 2z2] G[1, 0, 1, z1] +
, z1] + 30 z2 G[1, z2] G[1, 0, 1
0
1
1
1

30 z1 G[1, z1] G[1, 0, 1, z2] - 30 z2 G[t, =zt] G[1, O,
30 z1 z2 G[1, z1] G[1, 0, 1, z2] + 30 z2 G[o0, z2] G[1,
30 z1 z2 G[0, z2] G[1, 1, 0, z1] + 30 G[1, z2] G[1, 1, 0, z1] -
30 z1 G[1, z2] G[t, 1, 0, z1] - 30 z2 G[1, z2] G[1, 1, O, z1] +
30 z1 z2 G[1, z2] G[1, 1, 0, z1] - 30 z1 G[o, z1] G[1, 1, 0, z2] +
30 z1 z2 G[0, z1] G[1, 1, 0, z2] - 30 G[1, z1] G[1, 1, 0, z2] +
30 z1 G[1, z1] G[1, 1, 0, z2] + 30 z2 G[1, z1] G[1, 1, 0, 22] -
30 z1 z2 G[1, z1] G[1, 1, 0, z2] - 30 z1 z2 G[0, 0, 1, 0, z1] +
30 z1 z2 G[o, 0, z2]1 - 30 z1 G[o, 0,
30 z1 z2 G[o, , 1, z2] + 30 z1 z2 G[o,
30 z1 z2 G[o, 1, z1] - 30 z2 Glo, 1

0 1, 1, zi] + 30 z1 z2 G[0, O,

0 1

1 0
30 zi z2 G[1, 0 z1] + 30 zt G[1, 0, 1

1 1

1 1

1 [

0 1

, z11 + 30 22 G[0, 0, 1, 1, z2] -
, 0,0, 21] - 30 2t z2 G[O, 1,

1, 1
0, z21 + 30 z1 G[0, 1, 0, 1, z1] -
1
1

22] - 30 22 G[1, 0, 1, 0, z1] +

1, 1,
1, 0,

1, 2z2] + 30 z1 z2 G0, 1, 0, 1

0, z2] - 30 z1 z2 G[1, 0, 1, 0, z2] - 30 G[1, 0, 1, 1, z1] +

, z1] - 30 z1 z2 G[1, 0, 1, 1, z1] + 30 G[1, 0, 1, 1, z2] -

, z2] + 30 z1 z2 G[1, 0, 1, 1, z2] + 30 22 G[t, 1, 0, 0, z1] -

30 z1 z2 G[1, , 0, z1] - 30 zt G[t, t, 0, 0, z2] + 30 =zt z2 G[1, 1, 0, 0, z2] + 30 G[1, 1, 0, 1, z1] -

30 z1 G[1, 1, 0, 1, z1] - 30 z2 G[1, 1, O, 1, z1] + 30 z1 22 G[1, 1, O, 1, z1] - 30 G[1, 1, O, 1, z2] +

30 z1 G[1, 1, 0, 1, z2] + 30 z2 G[1, 1, 0, 1, z2] - 30 z1 22 G[1, 1, O, 1, z2] + 540 z1 Zeta[3] - 540 z2 Zeta[3] +

180 G[1, z1] Zeta[3] - 180 zi G[1, z1] Zeta[3] - 180 G[1, z2] Zeta[3] + 180 z2 G[1, z2] Zeta[3])

30 z1 G[1, 0, , z1] + 30 z2 G[1, 0, 1,
, z2] - 30 z2 G[1, O, 1,

30 z1 G[1, o0,
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Evaluating multiloop Feynman integrals by differential equations

I—Analy!:ical evaluation of the three-loop static quark potential

The static potential of two heavy quarks

as(1g ) as(lg)) >
1+ 547T a[lc]+ s a[2c]

vidaah = —a [c]as(|f7|)
(I91) = y

q2

as(d)’ REIPSYC YR T

with CIYl = Cf for the colour-singlet and CI8l = Cg — C,/2 for
the colour-octet case. Here, C4 = N, and

Cr = (N2 — 1)/(2N,) are the eigenvalues of the quadratic
Casimir operators of the adjoint and fundamental
representations of the SU(N,) colour gauge group,
respectively.
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as(1g ) as(lg)) >
1+ 547T a[lc]+ s a[2c]

R e

as(d)’ REIPSYC YR T

with CIYl = Cf for the colour-singlet and CI8l = Cg — C,/2 for
the colour-octet case. Here, C4 = N, and

Cr = (N2 — 1)/(2N,) are the eigenvalues of the quadratic
Casimir operators of the adjoint and fundamental
representations of the SU(N,) colour gauge group,
respectively.

[e] _ a[C] 3) 3 + a[C] (2)n + a[C] (1)n + a[ 1,(0)

a3
where n is the number of ||ght (massless) quarks.
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Evaluating multiloop Feynman integrals by differential equations

I—Analy!:ical evaluation of the three-loop static quark potential

as with three constants evaluated numerically

Analytical results

In particular, for N, = 3 we have

385645 893
A0 _ e {? 48163, + b (1844 — 1302¢(3)) + 295¢(3)
227 17343¢(5
+5256((3) + 7 (_E 115k + 35/22) _ %()
16437°  3861(¢(3))?
e T g+ 3888,
I3

with ss = ((=5,—1) + ¢(6), 3 = Lia(1/2) + &, b = log?2
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Evaluating multiloop Feynman integrals by differential equations

I—Analy!:ical evaluation of the three-loop static quark potential

Feynman integrals depending on two vectors, g and v, but the
scales g? and v? are separated because v - g = 0.
Introduce an extra scale
1 . 1
(=v-k)?  (y/2—v-k)?

to arrive at

~~~~~ o~ I oA s o T

. (v 1) 2so(—(k = r)?) >
((k+ @)= (—( = Py (—(k = D2)=(y/2— v~ Ky=(y /2= v 1)

Derive and solve DE with respect to y and obtain F;_ 11210
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